Advertisement

Chinese Science Bulletin

, Volume 55, Issue 35, pp 4018–4025 | Cite as

Photoelectron spectroscopy of terpenoids and prediction of their rate constants in atmospheric oxidation reactions

  • XiaoPeng Wang
  • ShengRui Tong
  • MaoFa GeEmail author
  • WeiGang Wang
  • DianXun Wang
Article Environmental Chemistry

Abstract

The electronic structures of six mono-terpenoids and two of their oxygenated derivatives were studied by He I photoelectron spectroscopy (PES). The observed bands were interpreted on the basis of empirical arguments and theoretical calculations. The first vertical ionization potentials for β-pinene, α-terpinene, terpinolene, γ-terpinene, limonene, myrcene, citral, and terpinene-4-ol were determined to be 8.73, 7.57, 8.26, 8.30, 8.53, 8.68, 8.71, and 8.77 eV, respectively. Most of these values have not been determined by PES before. The correlations of the first vertical ionization potentials of these compounds to the natural logarithms of rate constants for their reactions with the radicals OH, NO3, and O3 were determined. The correlation coefficients for their reactions with OH, NO3, and O3 were 0.97, 0.91, and 0.95, respectively. This method is a powerful technique for predicting the rate constants for the atmospheric oxidation reactions of terpenoids.

Keywords

photoelectron spectroscopy ionization potential outer-valence Green’s function (OVGF) rate constant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang X M, Sheng G Y, Fu J M, et al. Characteristics and possible origins of atmospheric monoterpenes from nonliving plants in Guangzhou. Chinese Sci Bull, 1999, 44: 747CrossRefGoogle Scholar
  2. 2.
    Wang L, Ge M F, Wang W G. Kinetic study of the reaction of chlorine atoms with 3-methyl-3-buten-1-ol. Chinese Sci Bull, 2009, 54: 3808–3812CrossRefGoogle Scholar
  3. 3.
    Wang K, Du L, Ge M F. Rate constants for the reaction of ozone with n-butyl, s-butyl and t-butyl methyl sulfides. Chinese Sci Bull, 2008, 53: 3620–3625CrossRefGoogle Scholar
  4. 4.
    Zhang X, Chen Z M, Wang H L, et al. An important pathway for ozonolysis of alpha-pinene and beta-pinene in aqueous phase and its atmospheric implications. Atmos Environ, 2009, 43: 4465–4471CrossRefGoogle Scholar
  5. 5.
    Coleman B K, Lunden M M, Destaillats H, et al. Secondary organic aerosol from ozone-initiated reactions with terpene-rich household products. Atmos Environ, 2008, 42: 8234–8245CrossRefGoogle Scholar
  6. 6.
    Ortega J, Helmig D. Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques-Part A. Chemosphere, 2008, 72: 343–364CrossRefGoogle Scholar
  7. 7.
    Zhao Z, Hao J M, Li J H, et al. Second organic aerosol formation by irradiation of α-pinene-NOx-H2O in an indoor smog chamber for atmospheric chemistry and physics. Chinese Sci Bull, 2008, 53: 3294–3300CrossRefGoogle Scholar
  8. 8.
    Annmarie E, Susan M L, Jeffrey R H, et al. Development of an improved image processing based visibility model. Environ Sci Technol, 1993, 27: 626–635CrossRefGoogle Scholar
  9. 9.
    Hallquist M, Wenger J C, Baltensperger U, et al. The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atoms Chem Phys, 2009, 9: 5155–5236CrossRefGoogle Scholar
  10. 10.
    Elisabeth A G, Lester B L, Peter J A. The Costs, air quality, and human health effects of meeting peak electricity demand with installed backup generators. Environ Sci Technol, 2006, 40: 6887–6893CrossRefGoogle Scholar
  11. 11.
    Pan X, Underwood J S, Xing J H, et al. Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry. Atoms Chem Phys, 2009, 9: 3851–3865CrossRefGoogle Scholar
  12. 12.
    Ng N L, Kwan A J, Surratt J D, et al. Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO3). Atoms Chem Phys, 2008, 8: 4140–4117Google Scholar
  13. 13.
    Johnson D, Marston G. The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere. Chem Soc Rev, 2008, 37: 699–716CrossRefGoogle Scholar
  14. 14.
    McGillen M R, Carey T J, Archibald A T, et al. Structure-activity relationship (SAR) for the gas-phase ozonolysis of aliphatic alkenes and dialkenes. Phys Chem Chem Phys, 2008, 10: 1757–1768CrossRefGoogle Scholar
  15. 15.
    Wu Y, Wang Y, Zhang A Q, et al. Three-Dimensional Quantitative Structure-Activity Relationships of flavonoids and estrogen receptors based on docking. Chinese Sci Bull, 2010, 55: 1488–1494CrossRefGoogle Scholar
  16. 16.
    Cabanas B, Baeza M T, Martin P, et al. Reaction of the NO3 radical with some thiophenes: Kinetic study and a correlation between rate constant and E-HOMO. Int J Chem Kinet, 2006, 38: 570–576CrossRefGoogle Scholar
  17. 17.
    Canosa-Mas C E, Flugge M L, King M D, et al. An experimental study of the gas-phase reaction of the NO3 radical with α, β-unsaturated carbonyl compounds. Phys Chem Chem Phys, 2005, 7: 643–650CrossRefGoogle Scholar
  18. 18.
    Baumgartner M T, Taccone R A, Teruel M A, et al. Theoretical study of the relative reactivity of chloroethenes with atmospheric oxidants (OH, NO3, O(3P), Cl(2P) and Br(2P)). Phys Chem Chem Phys, 2002, 4: 1028–1032CrossRefGoogle Scholar
  19. 19.
    Novak I, Kovač B, Kovačević G. Electronic structure of terpenoids. J Org Chem, 2001, 66: 4728–4731CrossRefGoogle Scholar
  20. 20.
    Garcia G A, Nahon L, Powis I. Near-threshold photoionization spectroscopy of the mono-terpenes limonene and carvone. Int J Mass Spectrom, 2003, 225: 261–270CrossRefGoogle Scholar
  21. 21.
    Brint P, Meshulam E, Gedanken A. Excited electronic states of limonene: A circular dichroism and photoelectron spectroscopy study of d-limonene. Chem Phys Lett, 1984, 109: 383–387CrossRefGoogle Scholar
  22. 22.
    Nauduri D, Greenberg A. Calculated ionization energies for a series of sesquiterpenes: comparisons with experimental vertical ionization energies and comments on related structure-activity relationships (SARs). Struct Chem, 2009, 20: 417–421CrossRefGoogle Scholar
  23. 23.
    Zhao Y, Zhang R X, Wang H, et al. Mechanism of atmospheric ozonolysis of sabinene: A DFT study. J Mol Struct-Theochem, 2010, 942: 32–37CrossRefGoogle Scholar
  24. 24.
    Zhao Y, Zhang R X, Sun X M, et al. Theoretical study on mechanism for O3-initiated atmospheric oxidation reaction of β-caryophyllene. J Mol Struct-Theochem, 2010, 9947: 68–75CrossRefGoogle Scholar
  25. 25.
    Zeng J, Li J P, Chen Z G, et al. Crystal and molecular structures of aristolochia versicolar lacone-c, a new type sesquiterpene lactone, C15H22O4. Chinese Sci Bull, 1988, 33: 201Google Scholar
  26. 26.
    Tong S R, Du L, Ge M F, et al. Gas-phase generation, structure, spectroscopy, and quantum chemical calculations of fluorocarbonylsulfur thiocyanate, FC(O)SSCN. Eur J Inorg Chem, 2008, 2008: 3987–3995CrossRefGoogle Scholar
  27. 27.
    Frisch M J, Trucks G W, Schlegel H B, et al: Pittsburgh PA: Gaussian, Inc., 2003Google Scholar
  28. 28.
    Cederbaum L S. One-body Green’s function for atoms and molecules: Theory and application. J Phys B, 1975, 8: 290–307CrossRefGoogle Scholar
  29. 29.
    von Niessen W, Schirmer J, Cederbaum L S. Computational methods for the one-particle green’s function. Comput Phys Rep, 1984, 1: 57–125CrossRefGoogle Scholar
  30. 30.
    Bieri G, Burger F, Heilbronner E, et al. Valence ionization energies of hydrocarbons. Helv Chim Acta, 1977, 60: 2213–2233CrossRefGoogle Scholar
  31. 31.
    Werstiuk N H, Clark K B, Leigh W J. Conformational analysis and structure elucidation of 2, 3-dimethyl and 2, 4-dimethyl-2, 4-hexadienes by AM1 and He (I) ultraviolet photoelectron spectroscopy. Can J Chem, 1990, 68: 2078–2084CrossRefGoogle Scholar
  32. 32.
    Beez M, Bieri G, Bock H, et al. The ionization potentials of butadiene, hexatriene, and their methyl derivatives: Evidence for through space interaction between double bond π-orbitals and non-bonded pseudo-π orbitals of methyl groups? Helv Chim Acta, 1973, 56: 1028–1046CrossRefGoogle Scholar
  33. 33.
    Streets D G, Potts A W. Photoelectron spectra of inner valence shells part 2-unsaturated hydrocarbons. J C S Faraday Trans II, 1974, 70: 1505–1515CrossRefGoogle Scholar
  34. 34.
    Bischof P, Hashmall J A, Heilbronner E, et al. Photoelektronspektroskopische Bestimmung der Wechselwirkung zwischen nicht-konjugierten Doppelbindungen [1]. Vorläufige Mitteilung. Helv Chim Acta, 1969, 52: 1745–1749CrossRefGoogle Scholar
  35. 35.
    Heilbronner E, Brogli F, Vogel E. Photoelectron spectroscopic assignment of symmetry to the ground state and first excited state of the 1,4-cyclohexadiene radical cation. J Electron Spectrosc, 1976, 9: 227–239CrossRefGoogle Scholar
  36. 36.
    Klasinc L, McGlynn S P. In: Patai S, ed. The Chemistry of Double- bonded Functional Groups. Chichester: Wiley, 1989. 163–170Google Scholar
  37. 37.
    Masclet P, Grosjean D, Mouvier G. Alkene ionization potentials part I: Quantitative determination of alkyl group structural effects. J Electron Spectrosc, 1973, 2: 225–237CrossRefGoogle Scholar
  38. 38.
    Bunzli J C, Burak A J, Frost D C. Through-space interaction in non-conjugated acyclic dienes studied by photoelectron spectroscopy. Tetrahedron, 1973, 29: 3735–3739CrossRefGoogle Scholar
  39. 39.
    Klessinger M, Gunkel E. The electronic structure of polyenes and unsaturated carbonyl compounds. Tetrahedron, 1978, 34: 3591–3598CrossRefGoogle Scholar
  40. 40.
    Hollas J M. The electronic absorption spectrum of acrolein vapour. Spectrochim Acta, 1963, 19: 1425–1441CrossRefGoogle Scholar
  41. 41.
    Dam H V, Oskam A. He(I) and He(II) photoelectron spectra of some substituted ethylenes. J Electron Spectrosc, 1978, 13: 273–290CrossRefGoogle Scholar
  42. 42.
    Masclet P, Mouvier G. Étude par spectrométrie photoélectronique d’aldéhydes et de cétones éthyléniques conjugués. J Electron Spectrosc, 1978, 14: 77–97CrossRefGoogle Scholar
  43. 43.
    Turner D W. Molecular Photoelectron Spectroscopy: A Handbook of He 584 Spectra. London, New York: Wiley Interscience, 1970Google Scholar
  44. 44.
    Peel J B, Willett G D. Photoelectron spectroscopic studies of the higher alcohols. Aust J Chem, 1975, 28: 2357–2364CrossRefGoogle Scholar
  45. 45.
    King M D, Canosa-Mas C E, Wayne R P. Frontier molecular orbital correlations for predicting rate constants between alkenes and the tropospheric oxidants NO3, OH and O3. Phys Chem Chem Phys, 1999, 1: 2231–2238CrossRefGoogle Scholar
  46. 46.
    Abbatt J P D, Anderson J G. High-pressure discharge flow kinetics and frontier orbital mechanistic analysis for hydroxyl+1,1-dichloroethene, cis-1,2-dichloroethene, trans-1,2 dichloroethene, 1-chloro-1,2,2 triflu- oroethene, and 1,1-dichloro-2,2-difluoroethene.fwdarw.products. J Phys Chem, 1991, 95: 2382–2390CrossRefGoogle Scholar
  47. 47.
    Lee S Y, Yoo H S, Kang W K, et al. Reaction of O(3P) atoms with CF2=CXY (X, Y=H, F, Cl, Br) discharge flow-chemiluminescence imaging technique. Chem Phys Lett, 1996, 257: 415–420CrossRefGoogle Scholar
  48. 48.
    Atkinson R. Gas-phase tropospheric chemistry of volatile organic compounds: 1. alkanes and alkenes. J Phys Chem Ref Data, 1997, 26: 215–290CrossRefGoogle Scholar
  49. 49.
    Calogirou A, Larsen B R, Kotzias D. Gas-phase terpene oxidation products: A review. Atmos Environ, 1999, 33: 1427–1439CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • XiaoPeng Wang
    • 1
  • ShengRui Tong
    • 1
  • MaoFa Ge
    • 1
    Email author
  • WeiGang Wang
    • 1
  • DianXun Wang
    • 1
  1. 1.Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations