Chinese Science Bulletin

, Volume 55, Issue 35, pp 3978–3988 | Cite as

Application of Raman spectroscopy in carbon nanotube-based polymer composites

  • Yun Gao
  • LingYun Li
  • PingHeng Tan
  • LuQi LiuEmail author
  • Zhong ZhangEmail author
Review Physical Chemistry


Raman spectroscopy has been widely used to identify the physical properties of carbon nanotubes (CNTs), and to assess their functionalization as well as orientation. Recently, Raman spectroscopy has become a powerful tool to characterize the interfacial properties between CNTs and polymer matrices. This review provides an overview of micro-Raman spectroscopy of CNTs and its application in studying CNT reinforced polymer composites. Based on the specific Raman band shifts relating to the mechanical deformation of CNTs, Raman scattering can be used to evaluate the interactions between the CNTs and the surrounding polymer in the composites, and to detect the phase transitions of the polymer, and investigate the local stress state as well as the Young’s modulus of the CNTs. Moreover, we also review the current progress of Raman spectroscopy in various CNT macroarchitectures (such as films, fibers as well as composite fibers). The microscale structural deformation of CNT macroarchitectures and strain transfer factors from macroscale architectures to microscale structures are inferred. Based on an in situ Raman-tensile test, we further predict the Young’s modulus of the CNT macroarchitectures and reveal the dominating factors affecting the mechanical performances of the CNT macroarchitectures.


Raman spectroscopy carbon nanotube composites CNT macroarchitecture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ferrari A C, Robertson J, ed, Tan P H, Li F, Cheng H M, translate. Raman spectroscopy in carbons: From nanotubes to diamond. Beijing: Chemical Industry Press, 2007Google Scholar
  2. 2.
    Dresselhaus M S. Dresselhaus G, Jorio A, et al. Raman spectorscopy on isolated single wall carbon nanotube. Carbon, 2002, 40: 2043–2061CrossRefGoogle Scholar
  3. 3.
    Milnera M, Kurti J, Hulman M, et al. Periodic resonance excitation and intertube interaction from quasicontinouous distributed helicities in single-wall carbon nanotubes. Phys Rev Lett, 2000, 84: 1324–1327CrossRefGoogle Scholar
  4. 4.
    Kuzmany H, Plank W, Hulman M, et al. Determination of SWCNT diameters from the Raman response of the radial breathing mode. Euro Phys J B, 2001, 22: 307–320CrossRefGoogle Scholar
  5. 5.
    Tan P H, Tang Y, Hu C Y, et al. Identification of the conducting category of individual carbon nanotubes from Stokes and anti-Stokes Raman scattering. Phys Rev B, 2000, 62: 5186–5190CrossRefGoogle Scholar
  6. 6.
    Gommans H H, Alldredge J W, Tashiro H, et al. Fibers of aligned single-walled carbon nanotubes: Polarized Raman spectroscopy. J Appl Phys, 88: 2509–2514Google Scholar
  7. 7.
    Bhattacharyya A R, Sreekkumar T V, Liu T, et al. Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer, 44: 2373–2377Google Scholar
  8. 8.
    Hwang J, Gommans H H, Ugawa A, et al. Polarized spectroscopy of aligned single-wall carbon nanotubes. Phys Rev B, 2000, 62: R13310–13313CrossRefGoogle Scholar
  9. 9.
    Zhao Q, Wagner H D. Raman spectroscopy of carbon-nanotube-based composites. Phil Trans R Soc Lond A, 2004, 362: 2407–2424CrossRefGoogle Scholar
  10. 10.
    Meyyappan M. Carbon Nanotubes Science and Applications. Boca Raton, FL: CRC Press, 2005Google Scholar
  11. 11.
    Collins P C, Arnold M S, Avouris P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science, 2001, 292: 706–709CrossRefGoogle Scholar
  12. 12.
    Britto P J, Santhanam K S V, Rubio A. Improved charge transfer at carbon nanotube electrodes. Adv Mater, 1998, 11: 154–157CrossRefGoogle Scholar
  13. 13.
    Dresselhaus M S, Dresselhaus G, Jorio A, et al. Monitoring oxidation of multiwalled carbon nanotubes by Raman Spectroscopy. J Raman Spectroscopy, 2007, 38: 728–736CrossRefGoogle Scholar
  14. 14.
    Duesberg G S, Loa I, Burghard M, et al. Polarized Raman spectroscopy on isolated single-wall carbon nanotubes. Phys Rev Lett, 2006, 85: 5436–5439CrossRefGoogle Scholar
  15. 15.
    Tartakovskii A I, Krizhanocskii D N, Kulakovskii V D. Polartion-polariton scattering in semiconductor microavities: Distinctive features and similarities to the three-dimensional case. Phys Rev B, 2000, 62: 13298CrossRefGoogle Scholar
  16. 16.
    Jorio A, Souza Filho A G, Brar V W, et al. Polarized resonant Raman study of isolated single-wall carbon nanotubes: Symmetry selection rules, dipolar and multipolar antenna effects. Phys Rev B, 2002, 65: 121402CrossRefGoogle Scholar
  17. 17.
    Jorio A, Saito R, Hafner J H, et al. Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys Rev Lett, 2001, 86: 1118–1121CrossRefGoogle Scholar
  18. 18.
    Rao A M, Richter E, Shunji B, et al. Diameter selective Raman scattering from vibrational modes in carbon nanotubes. Science, 1997, 275: 187–191CrossRefGoogle Scholar
  19. 19.
    Jishi R A, Venkataraman L, Dresselhaus M S, et al. Phonon modes in carbon nanotubules. Chem Phys Lett, 1993, 209: 77–82CrossRefGoogle Scholar
  20. 20.
    Kurti J, Kresse G, Kuzmany H. First-principles calculations of the radial breathing mode of single-wall carbon nanotubes. Phys Rev B, 1999, 58: R8869–8872CrossRefGoogle Scholar
  21. 21.
    Tan P H, Rozhin A G, Hasan T, et al. Photoluminescence spectroscopy of carbon nanotube bundles: Evidence for exciton energy transfer. Phys Rev Lett, 2007, 99: 137402CrossRefGoogle Scholar
  22. 22.
    Ren W C, Li F, Chen J, et al. Morphology, diameter distribution and Raman scattering measurements of double-walled carbon nanotubes synthesized by catalytic decomposition of methane. Chem Phys Lett, 2002, 359: 196–202CrossRefGoogle Scholar
  23. 23.
    Jorio A, Souza Filho, Dresselhaus G, et al. Joint density of electronic states for one isolated single-wall carbon nanotube studied by resonant Raman scattering. Phys Rev B, 2001, 63: 245416CrossRefGoogle Scholar
  24. 24.
    Yao Y G, Li Q W, Zhang J, et al. Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. Nat Mater, 2007, 6: 283–286CrossRefGoogle Scholar
  25. 25.
    Jorio A, Pinmenta M A, Dresselhaus G, et al. Resonance Raman spectra of carbon nanotubes by cross-polarized light. Phys Rev Lett, 2003, 90: 107403 1–4CrossRefGoogle Scholar
  26. 26.
    Brown S D, Jorio A, Dresselhaus M S, et al. Observations of the D-band feature in the Raman spectra of carbon nanotubes. Phys Rev B, 2001, 64: 073403–073406CrossRefGoogle Scholar
  27. 27.
    Jiang C, Kempa K, Zhao J, et al. Strong enhancement of the Breit-Wigner-Fano Raman line in carbon nanobute bundles caused by Plasmon band formation. Phys Rev B, 2002, 66: 161404–161407CrossRefGoogle Scholar
  28. 28.
    Osswald S, Flahaut E, Gogotsi Y. In situ Raman spectroscopy study of oxidation of double- and single-wall carbon nanotubes. Chem Mater, 2006, 18: 1525–1533CrossRefGoogle Scholar
  29. 29.
    Tan P H, Deng Y M, Zhao Q. Temperature-dependent Raman spectra and anomalous Raman phenomenon of highly oriented pyrolytic graphite. Phys Rev B, 1998, 58: 5435CrossRefGoogle Scholar
  30. 30.
    Tan P H, Hu C Y, Dong J, et al. Polarization properties, high-order Raman spectra, and frequency asymmetry between Stokes and anti-Stokes scattering of Raman modes in a graphite whisker. Phys Rev B, 2001, 64: 214301CrossRefGoogle Scholar
  31. 31.
    Tan P H, Zhang J, Wang X C. Raman scattering from an individual graphite tubular cone. Carbon, 2007, 45: 1116–1119CrossRefGoogle Scholar
  32. 32.
    Tan P H, An L, Liu L Q, et al. Probing the phonon dispersion relations of graphite from the double resonance process of Stokes and anti-Stokes Raman scatterings in multi-walled carbon nanotubes. Phys Rev B, 2002, 66: 245410CrossRefGoogle Scholar
  33. 33.
    Pimenta M A, Jorio A, Brown S D, et al. Diameter dependuence of the Raman D-band in isolated single-wall carbon nanotubes. Phys Rev B, 2001, 64: 041401CrossRefGoogle Scholar
  34. 34.
    Strano M S, Dyke C A, Usrey M L, et al. Electronic structure control of single-walled carbon nanotube functionalization. Science, 2003, 301: 1519–1522CrossRefGoogle Scholar
  35. 35.
    Dillon A C, Gennett T, Jones K, et al. A simple and complete purification of single-walled carbon nanotube materials. Adv Mater, 1999, 11: 1354–1358CrossRefGoogle Scholar
  36. 36.
    Zhang Y Y, Zhang J, Son H B, et al. Substrate-induced Raman frequency variation for single-walled carbon nanotubes. J Am Chem Soc, 2005, 127: 17156–17157CrossRefGoogle Scholar
  37. 37.
    Simmons J M, Nichols B M, Baker S E, et al. Effect of ozone oxidation on single-walled carbon nanotubes. Phys Chem B, 2006, 110: 7113–7118CrossRefGoogle Scholar
  38. 38.
    Rafailov P M, Thomsen C, Monev M, et al. Electrochemical functionalization of SWNT bundles in acid and salt media as observed by Raman and X-ray photoelectron spectroscopy. Phys Stat Soli, 2008, 245: 1967–1970CrossRefGoogle Scholar
  39. 39.
    Dresselhaus M S, Dresselhaus G, Saito R, et al. Raman spectroscopy of carbon nanotubes. Phys Rep, 2005, 409: 47–99CrossRefGoogle Scholar
  40. 40.
    Tan P H, Tang Y, Deng Y M, et al. Resonantly enhanced Raman scattering and high-order Raman spectra of single-walled carbon nanotubes. Appl Phys Lett, 1999, 75: 1524CrossRefGoogle Scholar
  41. 41.
    Philippe P, Brigitte V, Pascale L. Films and fibers of oriented single wall nanotubes. Carbon, 2002, 40: 1741–1749CrossRefGoogle Scholar
  42. 42.
    Ren W C, Li F, Cheng H M. Polarized Raman analysis of aligned double-walled carbon nanotubes. Phys Rev B, 2005, 71: 115428CrossRefGoogle Scholar
  43. 43.
    Ren W C, Li F, Cheng H M. Aligned double-walled carbon nanotube long ropes with a narrow diameter distribution. J Phys Chem B, 2005, 109: 7169–7173CrossRefGoogle Scholar
  44. 44.
    Cronin S B, Swan A K, Unlu M S, et al. Resonant Raman spectroscopy of individual metallic and semiconducting single-wall carbon nanotubes under uniaxial strain. Phys Rev B, 2005, 72: 035425CrossRefGoogle Scholar
  45. 45.
    Hadjiev V G, Iliev M N, Arepalli S, et al. Raman scattering test of single-wall carbon nanotube composites. Applied Phys Lett, 2001, 78: 3193–3195CrossRefGoogle Scholar
  46. 46.
    Zhao Q, Wood J R, Wagner H D. Stress fields around defects and fibers in a polymer using carbon nanotubes as sensors. Appl Phys Lett, 2001, 78: 1748–1750CrossRefGoogle Scholar
  47. 47.
    Zhao Q, Wagner H D. Two-dimensional stress field mapping of fiber reinforced polymer composites using carbon nanotubes strain sensors. Compos A, 2003, 34: 1219–1225CrossRefGoogle Scholar
  48. 48.
    Zhao Q, Forgley M D, Wagner H D. Direction-sensitive stress measurements with carbon nanotube sensors. Poly Adv Tech, 2001, 13: 759–764CrossRefGoogle Scholar
  49. 49.
    Barber A H, Zhao Q, Wagner H D, et al. Characterization of E-glass-polypropylene interfaces using carbon nanotubes as strain sensors. Compos Sci and Tech, 2004, 64: 1915–1919CrossRefGoogle Scholar
  50. 50.
    Schadler L S, Giannaris S C, Ajayan P M. Load transfer in carbon nanotube epoxy composites. Appl Phys Lett, 1998, 73: 3842–3844CrossRefGoogle Scholar
  51. 51.
    Ajayan P M, Schadler L S, Giannaris C, et al. Single-walled carbon nanotube-polymer composites: Strength and weakness. Adv Mater, 2000, 12: 750–753CrossRefGoogle Scholar
  52. 52.
    Cooper C A, Young R J, Halsall M. Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Composites A, 2001, 32: 401–411CrossRefGoogle Scholar
  53. 53.
    Zhao Q, Frogley M D, Wagner H D. The use of carbon nanotubes to sense matrix stresses around a single glass fiber. Compos Sci Tech, 2001, 61: 2139–2143CrossRefGoogle Scholar
  54. 54.
    Frogley M D, Zhao Q, Wagner H D. Polarized resonance Raman spectroscopy of single-wall carbon nanotubes within a polymer under strain. Phys Rev B, 2002, 65: 113413CrossRefGoogle Scholar
  55. 55.
    Hadjiev V G, Mitchell C A, Arepalli S, et al. Thermal mismatch strains in sidewall functionalized carbon nanotube/polystyrene nanocomposites. J Chem Phys, 2005, 122: 124708CrossRefGoogle Scholar
  56. 56.
    Hadjiev V G, Lagoudas D C, Oh E-S, et al. Buckling instabilities of octadecylamine functionalized carbon nanotubes embedded in epoxy. Compos Sci Tech, 2006, 66: 128–136CrossRefGoogle Scholar
  57. 57.
    Liu L Q, Barber A H, Nuriel S, et al. Mechanical properties of functionalized single-walled carbon-nanotube/poly(vinyl alcohol) nanocomposites. Adv Func Mater, 2005, 15: 975–980CrossRefGoogle Scholar
  58. 58.
    Zhao Q, Wood J R, Wagner H D. Using carbon nanotubes to detect polymer transitions. J Poly Sci B, 2001, 39: 1492–1495CrossRefGoogle Scholar
  59. 59.
    Lourie O, Wagner H D. Evaluation of Young’s modulus of carbon nanotubes by micro Raman spectroscopy. J Mater Res, 1998, 13: 2418–2422CrossRefGoogle Scholar
  60. 60.
    Wagner H D. Thermal residual stress in composites with anisotropic interphases. Phys Rev B, 1996, 53: 5055–5058CrossRefGoogle Scholar
  61. 61.
    Zhang M, Atkinson K R, Baughman R H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science, 2004, 306: 1358–1361CrossRefGoogle Scholar
  62. 62.
    Li Y L, Kinloch I A, Windle A H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science, 2004, 304: 276–278CrossRefGoogle Scholar
  63. 63.
    Xiao L, Chen Z, Feng C, et al. Flexible, stretchable, transparentcarbon nanotube thin film loudspeakers. Nano Lett, 2008, 8: 4539–4545CrossRefGoogle Scholar
  64. 64.
    Koziol K, Vilatela J, Moisala A, et al. High-Performance Carbon Nanotube Fiber. Science, 2007, 318: 1892–1895CrossRefGoogle Scholar
  65. 65.
    Ericson L M, Fan H, Peng H Q, et al. Macroscopic, neat, single-walled carbon nanotube fibers. science, 2004, 305: 1447–1450CrossRefGoogle Scholar
  66. 66.
    Zhang X B, Jiang K L, Chen F, et al. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv Mater, 2006, 18: 1505–1510CrossRefGoogle Scholar
  67. 67.
    Ma W J, Liu L Q, Yang R, et al. Monitoring a micromechanical process in macroscale carbon nanotube films and fibers. Adv Mater, 2009, 21: 603–608CrossRefGoogle Scholar
  68. 68.
    Ma W J, Liu L Q, Zhang Z, et al. High-strength composite fibers: Realizing true potential of carbon nanotubes in polymer matrix through continuous reticulate architecture and molecular level couplings. Nano Lett, 2009, 9: 2855–2861CrossRefGoogle Scholar
  69. 69.
    Ma W J, Song L, Yang R, et al. Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. Nano Lett, 2007, 7: 2307–2311CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.National Center for Nanoscience and Technology of ChinaBeijingChina
  2. 2.State Key Laboratory for Superlattices and Microstructures, Institute of SemiconductorsChinese Academy of SciencesBeijingChina
  3. 3.Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
  4. 4.Graduate School of Chinese Academy of SciencesBeijingChina

Personalised recommendations