Advertisement

Chinese Science Bulletin

, Volume 55, Issue 35, pp 4069–4073 | Cite as

Interface stability in a capillary loop undergoing phase changes in non-gravitational conditions

  • ZhengKai Tu
  • Wei LiuEmail author
  • ZhiChun Liu
  • XiaoMing Huang
Article Engineering Thermophysics
  • 35 Downloads

Abstract

A mathematical model based on the Lucas-Washburn equation has been developed to address the relationships between capillary height, capillary radius and heat flux in a capillary loop. The stability criteria at the interface are studied in detail by introducing a small perturbation to the interfaces of the capillary loop. The formulae deduced as a consequence are used to analyze the influence of height of the capillary wick and the stability in a capillary loop undergoing phase changes.

Keywords

capillary column phase change Lucas-Washburn equation stability k[non-gravitational condition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bazzo E, Riehl R R. Operation characteristics of a small-scale capillary pumped loop. Appl Therm Eng, 2003, 23: 687–705CrossRefGoogle Scholar
  2. 2.
    Zhang J T, Wang B X. Effect of capillarity at liquid-vapor interface on phase change without surfactant. Int J HeatMass Tran, 2002, 44: 2689–2694Google Scholar
  3. 3.
    Tong J G, Wu M Y, Wang P Y. Advanced engineering thermodynamics (in Chinese). Beijing: Science Press, 2006Google Scholar
  4. 4.
    Vershinin S V, Maydanik Y F. Investigation of pulsations of the operating temperature in a miniature loop heat pipe. Int J Heat Mass Tran, 2007, 50: 5232–5240CrossRefGoogle Scholar
  5. 5.
    Singh R, Akbarzadeh A, Mochizuki M. Operational characteristics of a miniature loop heat pipe with flat evaporator. Int J Therm Sci, 2008, 47: 1504–1515CrossRefGoogle Scholar
  6. 6.
    Chen Y M, Groll M, Mertz R, et al. Steady-state and transient performance of a miniature loop heat pipe. Int J Therm Sci, 2006, 45: 1084–1090CrossRefGoogle Scholar
  7. 7.
    Lucas R. Ueber das zeitgesetz des kapillaren aufstiegs von flussigkeiten. Kolloid-Z, 1918, 23: 15–22CrossRefGoogle Scholar
  8. 8.
    Washburn E W. The dynamics of capillary flow. Phys Rev, 1921, 17: 273–283CrossRefGoogle Scholar
  9. 9.
    Hickman K. Torpid phenomena and pump oils. J Vac Sci Technol, 1972, 9: 960–978CrossRefGoogle Scholar
  10. 10.
    Ramon G, Oronb A. Capillary rise of a meniscus with phase change. J Colloid Interf Sci, 2008, 327: 145–151CrossRefGoogle Scholar
  11. 11.
    Tu Z K, Liu W, Huang S Y, et al. Investigation of the stability of the capillary loop under non-gravitational condition (in Chinese). Prog Nat Sci, 2009, 19: 1380–1385Google Scholar
  12. 12.
    Li T H, Hua C S. Design and Application of Heat Pipe (in Chinese). Beijing: Chemical Industry Press, 1987. 331–340Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • ZhengKai Tu
    • 1
    • 2
  • Wei Liu
    • 3
    Email author
  • ZhiChun Liu
    • 3
  • XiaoMing Huang
    • 3
  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and ProgressingWuhan University of TechnologyWuhanChina
  2. 2.Key Laboratory of Fuel Cell Technology of Hubei ProvinceWuhan University of TechnologyWuhanChina
  3. 3.College of Energy and Power EngineeringHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations