Skip to main content
Log in

A multiphoton ionization study of acetone using time-of-flight mass spectrometry

  • Article
  • Chemical Physics
  • Published:
Chinese Science Bulletin

Abstract

The 3p Rydberg states of acetone and photodissociation of the acetone cation were studied using time-of-flight (TOF) mass spectrometry. The 3p Rydberg state spectroscopy of acetone was investigated with linearly polarized two-photon resonance enhanced multiphoton ionization (REMPI) from 320 to 337 nm. Several new transition bands were observed in the spectra. In addition to the CH3COCH3 + ion, CH3CO+ and CH3 + fragments were observed. The laser power dependences suggest that the CH3COCH3 +, CH3CO+ and CH3 + ions are produced in three-, four-, and four-photon processes, respectively. Production of CH3CO+ and CH3 +involves excitation of the ground state acetone cation by an additional photon and subsequent decomposition of the excited acetone ion. The average translational energies of CH3CO+ and CH3 + from dissociation in CH3COCH3 +(X) + hv → CH3CO+ + CH3 and CH3COCH3 +(X) + hv → CH3 + + CH3CO, respectively, were derived from the ion TOF peak profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nobre M, Fernandes A, Silva F F, et al. The VUV electronic spectroscopy of acetone studied by synchrotron radiation. Phys Chem Chem Phys, 2008, 10: 550–560

    Article  Google Scholar 

  2. Baba M, Hanazaki I, Nagashima U. The S1(n, π*) states of acetaldehyde and acetone in supersonic nozzle beam: Methyl internal rotation and C=O out-of-plane wagging. J Chem Phys, 1985, 82: 3938–3947

    Article  Google Scholar 

  3. Gaines G A, Donaldson D J, Strickler S J, et al. The (no-3s Rydberg state of acetone: Absorption spectroscopy of jet-cooled acetone and acetone-d6. J Phys Chem, 1988, 92: 2762–2766

    Article  Google Scholar 

  4. McDiarmid R. On the absorption spectrum of the 3s Rydberg state of acetone. J Chem Phys, 1991, 95: 1530–1536

    Article  Google Scholar 

  5. Brint P, Otoole L, Couris S, et al. Multiphoton ionization spectroscopy of the 3s(2+2, 1) and 4s(3+1) Rydberg states of acetone: Evidence for a molecular valence state at 153 nm. J Chem Soc, Faraday Trans, 1991, 87: 2891–2895

    Article  Google Scholar 

  6. Philis J G, Goodman L. Methyl rotor effects on acetone Rydberg spectra. II: The 1B2(3s←n)←1A1 transition. J Chem Phys, 1993, 98: 3795–3802

    Article  Google Scholar 

  7. McDiarmid R, Sabljic A. Experimental assignments of the 3p Rydberg states of acetone. J Chem Phys, 1988, 89: 6086–6095

    Article  Google Scholar 

  8. Kundu T, Thakur S N, Goodman L. Methyl rotor effects on acetone Rydberg spectra. I. The 1A2(3p←n)←1A1 transition. J Chem Phys, 1992, 97: 5410–5416

    Article  Google Scholar 

  9. Thakur S N, Guo D, Kundu T, et al. Two-photon photoacoustic spectroscopy of acetone 3p Rydberg states. Chem Phys Lett, 1992, 199: 335–340

    Article  Google Scholar 

  10. Xing X, McDiarmid R, Philis J G, et al. Vibrational assignments in the 3p Rydberg states of acetone. J Chem Phys, 1993, 99: 7565–7573

    Article  Google Scholar 

  11. Wiedmann R T, Goodman L, White M G. Two-color zero kinetic energy-pulsed field ionization spectroscopy of the acetone n-radical cation: The a2 torsional vibration. Chem Phys Lett, 1998, 293: 391–396

    Article  Google Scholar 

  12. Zhu Y F, Allman S L, Philips R C, et al. Photophysics of the acetone 3p Rydberg states utilizing two-photon resonant ionization spectroscopy. Chem Phys, 1996, 202: 175–184

    Article  Google Scholar 

  13. Galasso V. Ab initio study of multiphoton absorption properties of formaldehyde, acetaldehyde, and acetone. J Chem Phys, 1990, 92: 2495–2504

    Article  Google Scholar 

  14. Merchan M, Roos B O, McDiarmid R, et al. A combined theoretical and experimental determination of the electronic spectrum of acetone. J Chem Phys, 1996, 104: 1791–1804

    Article  Google Scholar 

  15. Steege D H A, Wirtz A C, Buma W J. Vibronic coupling in excited states of acetone. J Chem Phys, 2002, 116: 547–560

    Article  Google Scholar 

  16. Cant C S T, Danby C J, Eland J H D. Unimolecular decomposition of acetone ions and dimethyl-mercury ions studied by photoelectron-photoion coincidence spectroscopy. J Chem Soc, Faraday Trans II, 1975, 71: 1015–1025

    Article  Google Scholar 

  17. Trott W M, Blais N C, Walters E A. Molecular beam photoionization study of acetone and acetone-d6. J Chem Phys, 1978, 69: 3150–3158

    Article  Google Scholar 

  18. Powis I, Danby C J. A photoelectron-photoion coincidence spectrometer for the study of translational energy release distributions. Int J Mass Spectrom Ion Phys, 1979, 32: 15–26

    Article  Google Scholar 

  19. Wei L X, Yang B, Yang R, et al. A vacuum ultraviolet photoionization mass spectrometric study of acetone. J Phys Chem A, 2005, 109: 4231–4241

    Article  Google Scholar 

  20. Rennie E E, Boulanger A M, Mayer P M, et al. A photoelectron and TPEPICO investigation of the acetone radical cation. J Phys Chem A, 2006, 110: 8663–8675

    Article  Google Scholar 

  21. Lifshitz C, Tzidony E. Kinetic energy release distributions for C3H6O+ dissociations: A further test of the applicability of the energy-randomization hypothesis to unimolecular fragmentations. Int J Mass Spectrom Ion Phys, 1981, 39: 181–195

    Article  Google Scholar 

  22. McAdoo D J. Contributions of C3H6O+ ions with the oxygen on the middle carbon to gas phase ion chemistry. Mass Spectrom Revi, 2000, 19: 38–61

    Article  Google Scholar 

  23. Majumder C, Jayakumar O D, Yatsa R K, et al. Multiphoton ionization of acetone at 355 nm: A time-of-flight mass spectrometry study. Chem Phys Lett, 1999, 304: 51–59

    Article  Google Scholar 

  24. Jackson W M, Xu D D. Photodissociation of the acetone cation at 355 nm using the velocity imaging technique. J Chem Phys, 2000, 113: 3651–3657

    Article  Google Scholar 

  25. Mejia-Ospino E, Garcia G, Guerrero A, et al. High resolution multiphoton ionization and dissociation of acetone via 3s←n Rydberg transitions. European Phys J D, 2004, 30: 149–153

    Article  Google Scholar 

  26. Mejia-Ospino E, Alvarez I, Cisneros C. High resolution (3+1) REMPI and dissociation of acetone via 3p←n Rydberg transitions. Revista Mexicana De Fisica, 2006, 52: 368–371

    Google Scholar 

  27. Dolores Cena M, Gonzalez-Lafont A, Lluch J M, et al. Theoretical study of the unimolecular dissociation of the acetone cation radical. Mole Phys, 1997, 92: 393–398

    Article  Google Scholar 

  28. Anand S, Schlegel H B. Dissociation of acetone radical cation (CH3COCH3 +→CH3CO++CH3): An ab initio direct classical trajectory study. Phys Chem Chem Phys, 2004, 6: 5166–5171

    Article  Google Scholar 

  29. Zhou J, Schlegel H B. Dissociation of acetone radical cation (CH3COCH3 +→CH3CO++CH3): An ab initio direct classical trajectory study of the energy dependence of the branching ratio. J Phys Chem A, 2008, 112: 13121–13127

    Article  Google Scholar 

  30. Amaral G, Xu K S, Zhang J S. UV photodissociation dynamics of ethyl radical via Ã2A′ (3s) state. J Chem Phys, 2001, 114: 5164–5169

    Article  Google Scholar 

  31. Zhou W, Yuan Y, Chen S, et al. Ultraviolet photodissociation dynamics of the SH radical. J Chem Phys, 2005, 123: 054330–054331

    Article  Google Scholar 

  32. Wang T T, Li C Y, Zheng X F, et al. Resonance-enhanced multiphoton ionization spectroscopy on the B′2Σ+ and B2Π states of NS. Chinese Sci Bull, 2007, 52: 596–602

    Article  Google Scholar 

  33. Cong R, Cheng Y, Yang J J, et al. Measurement of photoionization cross sections of the excited states of titanium, cobalt, and nickel. J Appl Phys, 2009, 106: 0131031–0131036

    Article  Google Scholar 

  34. Belbruno J J, Spacek J, Christophy E. Multiphoton dissociation dynamics of dimethyl selenide. J Phys Chem, 1991, 95: 6928–6932

    Article  Google Scholar 

  35. Gandhi S R, Bernstein R B. Influence of the focal length of the laser beam focusing lens on MPI yield. Chem Phys, 1986, 105: 423–434

    Article  Google Scholar 

  36. Ding D J, Compton R N. Oak Ridge National Laboratory, USA, 1995

  37. Furuya K, Katsumata S, Kimura K. Photoelectron spectra of acetone and acetone dimer. J Electron Spectrosc Related Phenom, 1993, 62: 237–243

    Article  Google Scholar 

  38. Keane M P, Lunell S, Debrito A N, et al. Effects of relaxation and hyperconjugation on shake-up transitions in X-ray excited photoelectron spectra of some small carbonyl compounds. J Electron Spectrosc Related Phenom, 1991, 56: 313–339

    Article  Google Scholar 

  39. Franklin J L, Hierl P M, Whan D A. Measurement of the translational energy of ions with a time-of-flight mass spectrometer. J Chem Phys, 1967, 47: 3148–3153

    Article  Google Scholar 

  40. Martinez R I, Ganguly B. Kinetics and mechanism of the collision-activated dissociation of the acetone cation. J Am Soc Mass Spectrom, 1992, 3: 427–444

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XianFeng Zheng.

About this article

Cite this article

Zheng, X., Wu, H., Song, Y. et al. A multiphoton ionization study of acetone using time-of-flight mass spectrometry. Chin. Sci. Bull. 55, 3123–3130 (2010). https://doi.org/10.1007/s11434-010-3286-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-3286-7

Keywrds

Navigation