Skip to main content
Log in

First-principles calculations of electronic structure and optical properties of strained Mg2Si

  • Article
  • Condensed Matter Physics
  • Published:
Chinese Science Bulletin

Abstract

A detailed theoretical study on structural, electronic and optical properties of Mg2Si under the isotropic lattice deformation was performed based on the first-principles pseudopotential method. The results show that the isotropic lattice deformation results in a linear decrease in the energy gap for the direct Γ151 and indirect Γ15-L1 transitions from 93% to 113%, while the indirect band gap Γ15-X1 increases from 93% to 104% and then reduces over 104%. When the crystal lattice is 93% compressed and 113% stretched, the magnesium silicide is a zero-gap semiconductor. Furthermore, the isotropic lattice deformation makes the dielectric function shift and the static dielectric constant change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borisenko V E. Semiconducting Silicides. Berlin: Springer, 2000

    Google Scholar 

  2. Song S W, Striebel K A, Song X Y, et al. Amorphous and nanocrystalline Mg2Si thin-film electrodes. J Power Sources, 2003, 119–121: 110–112

    Article  Google Scholar 

  3. Yoshinaga M, Iida T, Noda M, et al. Bulk crystal growth of Mg2Si by the vertical Bridgman method. Thin Solid Films, 2004, 461: 86–89

    Article  Google Scholar 

  4. Serikawa T, Henmi M, Yamaguchi T, et al. Depositions and microstructures of Mg-Si thin film by ion beam sputtering. Surf Coat Tech, 2006, 200: 4233–4239

    Article  Google Scholar 

  5. Janot R, Cuevas F, Latroche M, et al. Influence of crystallinity on the structural and hydrogenation properties of Mg2X phases (X=Ni, Si, Ge, Sn). Intermetallics, 2006, 14: 163–169

    Article  Google Scholar 

  6. Wang L, Qin X Y, Xiong W, et al. Fabrication and mechanical properties of bulk nanocrystalline intermetallic Mg2Si. Mater Sci Eng A, 2007, 459: 216–222

    Article  Google Scholar 

  7. Tamura D, Nagai R, Sugimoto K, et al. Melt growth and characterization of Mg2Si bulk crystals. Thin Solid Films, 2007, 515: 8272–8276

    Article  Google Scholar 

  8. Gu J, Wang S Y, Gou B C. The geometrical structure, electronic structure and magnetism of bimetallic AunM2 (n=1, 2; M=Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd) clusters. Sci China Ser G-Phys Mech Astron, 2009, 52: 1011–1020

    Article  Google Scholar 

  9. Wang J J, Zhang L T, Zeng Q F, et al. First-principles investigation on initial stage of 2H-SiC(001) surface oxidation. Chinese Sci Bull, 2009, 54: 1487–1494

    Article  Google Scholar 

  10. Yu T, Chen L Q, Wang C Y, et al. First-principles investigation of the impurity-kink interaction in bcc iron. Chinese Sci Bull, 2008, 53: 1796–1803

    Article  Google Scholar 

  11. Zhou J Z, Wang C Y. First-principles study of the effects of Si doping on geometric and electronic structure of closed carbon nanotube. Chinese Sci Bull, 2005, 50: 1823–1828

    Article  Google Scholar 

  12. Xiong D P, Zhou S L, Wang Q, et al. The band structures of BSb and BxGa1−x Sb alloys. Sci China Ser G-Phys Mech Astron, 2009, 52: 843–847

    Article  Google Scholar 

  13. Zhou S Y, Xie Q, Yan W J, et al. First-principles study on the electronic structure and optical properties of CrSi2. Sci China Ser G-Phys Mech Astron, 2009, 52: 46–51

    Article  Google Scholar 

  14. Zhao F J, Xie Q, Chen Q, et al. First-principles calculations on the electronic structure and optical properties of BaSi2. Sci China Ser G-Phys Mech Astron, 2009, 52: 580–586

    Article  Google Scholar 

  15. Guan P F, Wang C Y, Yu T. Electronic structure and physical properties of stable and metastable phases in YN: Density-functional theory calculations. Chinese Sci Bull, 2008, 53: 3131–3137

    Article  Google Scholar 

  16. Wang G, Ma Y X. Monte Carlo investigation of avalanche multiplication process in thin InP avalanche photodiodes. Chinese Sci Bull, 2009, 54: 3685–3690

    Article  Google Scholar 

  17. Folland N O. Self-consistent calculations of the energy band structure of Mg2Si. Phys Rev, 1967, 158: 764–775

    Article  Google Scholar 

  18. Au-Yang M Y, Cohen M L. Electronic structure and optical properties of Mg2Si, Mg2Ge, and Mg2Sn. Phys Rev, 1969, 178: 1358–1364

    Article  Google Scholar 

  19. Aymerich F, Mula G. Pseudopotential band structures of Mg2Si, Mg2Ge, Mg2Sn, and of the solid solution Mg2(Ge, Sn). Phys Status Solidi, 1970, 42: 697–704

    Article  Google Scholar 

  20. Corkill J L, Cohen M L. Structural, bonding, and electronic properties of IIA–IV antifluorite compounds. Phys Rev B, 1993, 48: 17138–17144

    Article  Google Scholar 

  21. Imai Y, Watanabe A. Energetics of alkaline-earth metal silicides calculated using a first-principle pseudopotential method. Intermetallics, 2002, 10: 333–341

    Article  Google Scholar 

  22. Min X M, Xing X L, Zhu L. Electronic structure and thermoelectric property of Mg2Si and series of doping Sb, Te and Ag. J Funct Mater, 2004, 35: 1154–1159

    Google Scholar 

  23. Chen Q, Xie Q, Yan W J, et al. First-principles calculations on the electronic structure and optical properties of Mg2Si. Sci China Ser G-Phys Mech Astron, 2008, 38: 825–833

    Google Scholar 

  24. Krivosheeva A V, Kholod A N, Shaposhnikov V L, et al. Band structure of Mg2Si and Mg2Ge semicongducting compounds with a strained crystal lattice. Semiconductors, 2002, 36: 496–500

    Article  Google Scholar 

  25. Payne M C, Teter M P, Allan D C, et al. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev Mod Phys, 1992, 64: 1045–1097

    Article  Google Scholar 

  26. Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140: A1133–A1138

    Article  Google Scholar 

  27. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B, 1990, 41: 7892–7895

    Article  Google Scholar 

  28. Shen X C. Spectrum and Optical Property of Semiconductor (in Chinese). 2nd ed. Beijing: Science Press, 1992

    Google Scholar 

  29. Fang R C. Solid State Spectroscopy (in Chinese). Hefei: University of Science and Technology of China Press, 2001

    Google Scholar 

  30. Barlock J G, Mondolfo L F. Structure of some aluminum-iron-magnesium-manganese-silicon alloys. Zeitschrift fur Metallkunde, 1975, 66: 605–611

    Google Scholar 

  31. Morris R G, Redin R D, Danielson G C. Semiconducting properties of Mg2Si single crystals. Phys Rev, 1958, 109: 1909–1915

    Article  Google Scholar 

  32. Alouani M, Wills J M. Calculated optical properties of Si, Ge, and GaAs under hydrostatic pressure. Phys Rev B, 1996, 54: 2480–2490

    Article  Google Scholar 

  33. Goni A R, Syassen K, Cardona M. Effect of pressure on the refractive index of Ge and GaAs. Phys Rev B, 1990, 41: 10104–10110

    Article  Google Scholar 

  34. Krivosheeva A V, Shaposhnikov V L, Borisenko V E. Electronic structure of stressed CrSi2. Mater Sci Eng B, 2003, 101: 309–312

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Xie.

About this article

Cite this article

Chen, Q., Xie, Q., Zhao, F. et al. First-principles calculations of electronic structure and optical properties of strained Mg2Si. Chin. Sci. Bull. 55, 2236–2242 (2010). https://doi.org/10.1007/s11434-010-3280-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-3280-7

Keywords

Navigation