Skip to main content
Log in

Electron transfer reactions of piperidine aminoxyl radicals

  • Review
  • Organic Chemistry
  • Published:
Chinese Science Bulletin

Abstract

This review article summarizes the electron transfer reactions of piperidine aminoxyl radicals. Electrochemical studies revealed the single electron transfer nature of piperidine aminoxyl radicals. In solution, piperidine aminoxyl radicals serve as single electron transfer oxidation reagent to react with various biologically interesting molecules such as glutathione, cysteine, ascorbic acid, and amines. The reaction product distribution, reaction kinetics, intermediates, and the reaction features in biological mimic environments including micelles and cyclodextrins were investigated. Oxoammonium salts, the one-electron transfer oxidation products of piperidine aminoxyl radicals, are agents of organic synthesis to selectively generate ketones or di-ketones from alcohols or ketones bearing α-methylene group under mild conditions. The new reactions of oxoammonium salts with aromatic amines, phenols, heterocycles including phenothiazines, papaverine, and bilirubin are also illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fukuzumi S. New perspective of electron transfer chemistry. Org Biomol Chem, 2003, 1: 609–620

    Article  Google Scholar 

  2. Tuite E, Benniston A, Harriman A, et al. Electron transfer in chemistry. J Chem Soc, Perkin Trans 1, 2002, 17: 2028–2030

    Google Scholar 

  3. Mariano P S, ed. Advances in Electron Transfer Chemistry. Vol 6. Greenwich, C T: JAI Press, 1999

    Google Scholar 

  4. Eberson L. Electron-transfer reactions in organic chemistry. Adv Phys Org, 1982, 18: 79–185

    Article  Google Scholar 

  5. Todres Z V. Ion-radical organic reactions. Tetrahedron, 1985, 41: 2771–2823

    Article  Google Scholar 

  6. Liu Y C, Liu Z L. Free radical chemistry. Huaxue Tongbao, 1999, 12: 17–20

    Google Scholar 

  7. Liu Y C, Dang H S, Liu Z L. Some recent studies on electron transfer reactions at Lanzhou University. Rev Chem Intermed, 1986, 7: 111–131

    Article  Google Scholar 

  8. Barclay L R C, Ingold K U. Autoxidation of biological molecules. 2. Autoxidation of a model membrane, comparison of the autoxidation of egg lecithin phosphatidylcholine in water and in chlorobenzene. J Am Chem Soc, 1981, 103: 6478–6785

    Article  Google Scholar 

  9. Kehl H. Chemistry and Biology of Hydroxamic Acids. Basel: Karger, 1982

    Google Scholar 

  10. Soule B P, Hyodo F, Matsumoto K, et al. The chemistry and biology of nitroxide compounds. Free Radic Biol Med, 2007, 42: 1632–1650

    Article  Google Scholar 

  11. Hideg K, Kalai T, Sar C P. Recent results in chemistry and biology of nitroxides. J Heterocycl Chem, 2005, 42: 437–450

    Article  Google Scholar 

  12. Keana J F W. Newer aspects of the synthesis and chemistry of nitroxide spin labels. Chem Rev, 1978, 78: 37–64

    Article  Google Scholar 

  13. Brik M E. Chemistry of persistent free bi- and polyradicals. Heterocycles, 1995, 41: 2827–2873

    Article  Google Scholar 

  14. Naik N, Braslau R. Synthesis and applications of optically active nitroxides. Tetrahedron, 1998, 54: 667–696

    Article  Google Scholar 

  15. Lemaire M T. Recent developments in the coordination chemistry of stable free radicals. Pure Appl Chem, 2004, 76: 277–293

    Article  Google Scholar 

  16. Volodarsky L B, Reznikov V A, Ovcharenko V I. Synthetic chemistry of stable nitroxides. Boca Raton: CRC Press, 1994

    Google Scholar 

  17. Zhdanov R I. Bioactive Spin Labels. Berlin: Springer-Verlag, 1992

    Google Scholar 

  18. Berliner L J. Spin Labeling: The Next Millennium, Biological Magnetic Resonance, Vol 14. New York: Plenum Press, 1998

    Google Scholar 

  19. Hideg K, Hankovszky O H. Chemistry of spin-labeled amino acids and peptides, some new mono- and bifunctionalized nitroxide free radicals. Biol Magnetic Res, 1989, 8(Spin Labeling): 427–488

    Google Scholar 

  20. Kocherginsky N, Swartz H M. Nitroxide spin labels: Reactions in biology and chemistry. New York: CRC Press, 1995

    Google Scholar 

  21. Rozantsev E G. Nitroxyl radicals: Unique findings of 20th century Russian chemists. Rossiiskii Khimicheskii Zhurnal, 2000, 44: 87–91

    Google Scholar 

  22. Rozantsev E G, Sholle V D. Synthesis and reactions of stable nitroxyl radicals. II, reactions. Synthesis, 1971, 8: 401–414

    Article  Google Scholar 

  23. Rozantsev E G, Sholle V D. Advances in the chemistry of nitroxyl radicals. Usp Khim, 1971, 40: 417–443

    Google Scholar 

  24. Rozantsev E G. Free Nitroxyl Radicals. New York: Plenum Press, 1970

    Google Scholar 

  25. Hoffman A K, Henderson A T. A new stable free radical: di-tert-Butylnitroxide. J Am Chem Soc, 1961, 83: 4671

    Article  Google Scholar 

  26. Martinez de Ilarduya J I, Krzyczmonik P, Scholl H, et al. Electrode reactions of nitroxide radicals. IX, anodic oxidations of 4-hydroxyi-mino-2,2,6,6-tetramethylpiperidine-1-oxyl and 4-[(aminocarbonyl) hydrazone]-2,2,6,6-tetramethylpiperidine-1-oxyl in water solutions. Electroanalysis, 1991, 3: 233–237

    Article  Google Scholar 

  27. Scholl H, Chmielewska B, Skowronski R, et al. Electrode reactions of nitroxyl radicals, derivatives of 2,2,6,6-tetramethylpiperidine. Part IV. Pol J Chem, 1987, 61: 851–859

    Google Scholar 

  28. Marx L, Schoellhorn B. Intramolecular charge effects in the electrochemical oxidation of aminoxyl radicals. New J Chem, 2006, 30: 430–434

    Article  Google Scholar 

  29. Summermann W, Deffner U. Electrochemical oxidation of aliphatic nitroxyl radicals. Tetrahedron, 1975, 31: 593–596

    Article  Google Scholar 

  30. Semmelhack M F, Chon C S, Cortes D A. Nitroxyl-mediated electrooxidation of alcohols to aldehydes and ketones. J Am Chem Soc, 1983, 105: 4492–4494

    Article  Google Scholar 

  31. Andruzzi R, Trazza A, Greci L, et al. On the electrochemical reduction mechanism of indolinone nitroxide radicals in DMF. J Electroanal Chem Interfacial Electrochem, 1980, 107: 365–374

    Article  Google Scholar 

  32. Neiman M B, Mairanovskii S G, Korvaraskaya B M, et al. Polarographic study of some N-oxide free radicals. Izv Akad Nauk SSSR, Ser Khim, 1964, 8: 1518–1521

    Google Scholar 

  33. Liu Y C, Zhang F, Jiang Z Q. Nitroxides, XVII, electrochemical behavior and kinetics of self-decay of piperidine nitroxide free radicals in aqueous solutions. Acta Chim Sin, 1987, 45: 447–483

    Google Scholar 

  34. Zhang F, Liu Y C. Studies on nitroxides, XVIII, kinetics of one- electron electrochemical oxidation of piperidine nitroxides in aqueous solution. Acta Chim Sin, 1989, 47: 186–190

    Google Scholar 

  35. Zhang F, Liu Y C. Studies on nitroxides, XXI, mechanism for the one-electron reduction electrode reaction of piperidine nitroxides in aqueous solution studied by polarography. Acta Chim Sin, 1989, 47: 1120–1123

    Google Scholar 

  36. Nicholson R S, Shain I. Theory of stationary electrode polarography, single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem, 1964, 36: 706–723

    Article  Google Scholar 

  37. Smith D E, McCord T G. Alternating current polarography and irreversible processes. Anal Chem, 1968, 40: 474–481

    Article  Google Scholar 

  38. Galvez J, Molina A, Serna C. Pulse polarography. Part IX, method of discrimination between the catalytic, CF, ECE and EC mechanisms, calculation of the rate constants of the chemical reaction for the catalytic, CE and ECE mechanisms. J Electroanal Chem Interfacial Electrochem, 1981, 124: 201–211

    Article  Google Scholar 

  39. Davydov R M. Interaction of iron (II) ions with an iminoxyl radical. Zh Fiz Khim, 1968, 42: 2639–2643

    Google Scholar 

  40. Medzhidov A A, Rozantsev E G, Neiman M B. Utilization of oxidizing properties of iminoxyl radicals for synthesis of individual ion-radicals from aromatic amines. Dokl Akad Nauk SSSR, 1966, 168: 348–350

    Google Scholar 

  41. Zelenin S N, Khidekel M L, Mozzhukhin D D, et al. Catalysis of hydrogen transfer by methods presumably similar to those of enzymes, III, model reactions of dihydronicotinamide-adenine dinucleotide coenzyme, effectiveness of flavines, quinones, and similar substances as catalysts. Zh Obshch Khim, 1967, 37: 1500–1507

    Google Scholar 

  42. Kalashnikova L A, Buchachenko A L, Neiman M B, et al. Energies of oxygen-hydrogen bond breaking in tri-tert-butylphenol and some hydroxylamines, and the strength of the π-complex of a dianisyl nitroxide radical with benzene. Zh Fiz Khim, 1969, 43: 64–71

    Google Scholar 

  43. Tatikolov A S, Khudyakov I V, Kuz’min V A. Kinetics of reactions of electron transfer between semiquinone and stable radicals. Izv Akad Nauk SSSR, Ser Khim, 1981, 5: 1003–1007

    Google Scholar 

  44. Liu Y C, Wu S P, Jiang Z Q, et al. Nitroxides, XI, one-electron transfer reaction of piperidine nitroxides with hydroxylamine. Chem J Chinese Univ, 1985, 6: 709–713

    Google Scholar 

  45. O’Neill P, Jenkins T C. Electron-transfer reactions of nitroxyl radicals with one-electron reduced quinones and viologens. J Chem Soc, Faraday Trans 1, 1979, 75: 1912–1918

    Article  Google Scholar 

  46. Koroli L L, Kuzmin V A, Khudyakov I V. Kinetics of recombination, dismutation, and disproportionation reactions involving neutral ketyl radicals and radical anions. Int J Chem Kinet, 1984, 16: 379–396

    Article  Google Scholar 

  47. Kaplan J, Canonico P G, Caspary W J. Electron spin resonance studies of spin-labeled mammalian cells by detection of surface-membrane signals. Proc Natl Acad Sci USA, 1973, 70: 66–70

    Article  Google Scholar 

  48. Stier A, Sackmann E. Spin labels as enzyme substrates, heterogeneous lipid distribution in liver microsomal membranes. Biochim Biophys Acta, 1973, 311: 400–408

    Article  Google Scholar 

  49. Lee T D, Birrell G B, Bjorkman P J, et al. Azethoxyl nitroxide spin labels, ESR studies involving thiourea crystals, model membrane systems and chromatophores, and chemical reduction with ascorbate and dithiothreitol. Biochim Biophys Acta, 1979, 550: 369–383

    Article  Google Scholar 

  50. Chan T W, Bruice T C. Reaction of nitroxides with 1,5-dihydroflavins and N3,5-dimethyl-1,5-dihydrolumiflavin. J Am Chem Soc, 1977, 99: 7287–7291

    Article  Google Scholar 

  51. Goldberg J S, Rauckman E J, Rosen G M. Bioreduction of nitroxides by Staphylococcus aureus. Biochem Biophys Res Commun, 1977, 79: 198–202

    Article  Google Scholar 

  52. Kocherginsky N M, Kostetski Y Y, Smirnov A I. Use of nitroxide spin probes and electron paramagnetic resonance for assessing reducing power of beer, role of SH groups. J Agri Food Chem, 2005, 53: 1052–1057

    Article  Google Scholar 

  53. Couet W R, Eriksson U G, Sosnovsky G, et al. Factors affecting nitroxide stability in biological materials. Biopharm Pharmacokinet Eur Congr, 2nd, 1984, 2: 616–625

    Google Scholar 

  54. Couet W R, Brasch R C, Sosnovsky G, et al. Factors affecting nitroxide reduction in ascorbate solution and tissue homogenates. Magn Reson Imaging, 1985, 3: 83–88

    Article  Google Scholar 

  55. Giotta G J, Wang H H. Reduction of nitroxide free radicals by biological materials. Biochem Biophys Res Commun, 1972, 46: 1576–1580

    Article  Google Scholar 

  56. Morrissett J D, Drott H R. Oxidation of the sulfhydryl and disulfide groups by the nitroxyl radical. J Biol Chem, 1969, 244: 5083–5084

    Google Scholar 

  57. Liu Y C, Wang X Z, Liu Z L. Studies on nitroxides, IV, oxidation of cysteine by 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl. Chem J Chinese Univ, 1983, 4: 257–259

    Google Scholar 

  58. Liu Y C, Jiang Z Q, Zhang F. Nitroxides, XIII, mechanism of reaction between 2,2,6,6-tetramethyl-4-hydroxy-1-piperidinyloxy and d,l-cysteine in alkaline buffer solution. Acta Chim Sin, 1985, 43: 1086–1091

    Google Scholar 

  59. Liu Y C, Zhang F. Studies on nitroxides, XX, mechanistic study on reaction between 2,2,6,6-tetramethyl-4-hydroxypiperidine oxoammonium bromide and cysteine in acidic aqueous medium. Acta Chim Sin, 1989, 47: 411–416

    Google Scholar 

  60. Liu Y C, Jiang Z Q, Gao Z L. Studies on nitroxides, XIV, redox reaction of 2,2,6,6-tetramethyl-4-hydroxypiperidine nitroxide and glutathione. Chinese Sci Bull, 1987, 32: 286–287

    Google Scholar 

  61. Liu Y C, Gao Z L. Studies on nitroxides-kinetics and mechanism of the reaction tween glutathione and 2,2,6,6-tetramethyl-4-hydro-xypiperidine-1-oxyl radical in alkaline buffer. Chinese Sci Bull, 1988, 33: 2032–2035

    Google Scholar 

  62. Martinek K, Yatsimirski A K, Levashov A V, et al. The kinetic theory and the mechanisms of micellar effects on chemical reactions. In: Mittal K L, ed. Micellization, Solubilization, Microemulsions (Proc Int Symp). New York: Plenum Press, 1977. 489–508

    Google Scholar 

  63. Zhang F, Gao Z L, Liu Y C. Studies on single-electron oxidation of N-alkyl-p-phenylenediamines and benzidines in aqueous acetonitrile by cyclovoltammetry and ESR spectroscopy. Chem J Chin Univ, 1988, 4: 24–31

    Google Scholar 

  64. Gao Z L, Zhang F, Liu Y C. Studies on nitroxides, XXIII, single electron transfer reaction between piperidine nitroxide, its oxoammonium salt and N,N,N′,N′-tetramethyl-p-phenylenediamine in aqueous solution. Chem J Chinese Univ, 1989, 10: 718–723

    Google Scholar 

  65. Seib P A, Tolbert B M, ed. Ascorbic acid: Chemistry, metabolism, and uses. Advances in Chemistry Series, Vol 200. Washington DC: ACS, 1982

    Google Scholar 

  66. Craw M T, Depew M C. Contributions of electron spin resonance spectroscopy to the study of vitamins C, E and K. Rev Chem Intermed, 1985, 6: 1–31

    Article  Google Scholar 

  67. Hubbell W L, McConnell H M. Motion of steroid spin labels in membranes. Proc Natl Acad Sci USA, 1969, 63: 16–22

    Article  Google Scholar 

  68. Kocherginskii N M, Sakste N I, Berkovich M A, et al. Reduction of spin labels with ascorbic acid in solution and in biomembranes. Biofizika, 1981, 26: 442–446

    Google Scholar 

  69. Kornberg R D, McConnell H M. Inside-outside transitions of phospholipids in vesicle membranes. Biochem, 1971, 10: 1111–1120

    Article  Google Scholar 

  70. Ross A H, McConnell H M. Permeation of a spin-label phosphate into the human erythrocyte. Biochem, 1975, 14: 2793–2798

    Article  Google Scholar 

  71. Tonomura Y, Morales M F. Change in state of spin labels bound to sarcoplasmic reticulum with change in enzymic state, as deduced from ascorbate-quenching studies. Proc Natl Acad Sci USA, 1974, 71: 3687–3691

    Article  Google Scholar 

  72. Quintanilha A T, Packer L. Surface localization of sites of reduction of nitroxide spin-labeled molecules in mitochondria. Proc Natl Acad Sci USA, 1977, 74: 570–574

    Article  Google Scholar 

  73. Craescu C T, Baracu I, Grecu N, et al. On the reduction of nitroxide free radicals by ascorbic acid in solution and erythrocyte suspension. Rev Roum Biochim, 1982, 19: 15–23

    Google Scholar 

  74. Paleos C M, Dais P. Ready reduction of some nitroxide free radicals with ascorbic acid. J Chem Soc Chem Commun, 1977, 10: 345–346

    Article  Google Scholar 

  75. Marx L, Chiarelli R, Guiberteau T, et al. A comparative study of the reduction by ascorbate of 1,1,3,3-tetraethylisoindolin-2-yloxyl and of 1,1,3,3-tetramethylisoindolin-2-yloxyl. J Chem Soc, Perkin Trans 1, 2000, 8: 1181–1182

    Article  Google Scholar 

  76. Kocherginskii N M, Gol’dfel’d M G, Davydov R M, et al. Effect of detergents on the rate of reaction of iminoxyl radicals with ascorbic acid. Zh Fiz Khim, 1972, 46: 2375–2376

    Google Scholar 

  77. Lissi E A, Rubio M A, Araya D, et al. Reaction of di-tert-butyl nitroxide radicals. Int J Chem Kinet, 1980, 12: 871–881

    Article  Google Scholar 

  78. Ebel C, Ingold K U, Michon J, et al. Nitroxides, 105, Kinetics of the reduction of a nitroxide radical by ascorbic acid in the presence of β-cyclodextrin. Tetrahedron Lett, 1985, 26: 741–744

    Article  Google Scholar 

  79. Ebel C, Ingold K U, Michon J, et al. Nitroxides, 107, Kinetics of reduction of a nitroxide radical by ascorbic acid in the presence of β-cyclodextrin, determination of the radical β-cyclodextrin association constant and rate constants for reaction of the free and complexed nitroxide radical. Nouv J Chim, 1985, 9: 479–485

    Google Scholar 

  80. Okazaki M, Kuwata K. A stopped-flow ESR study on the reactivity of some nitroxide radicals with ascorbic acid in the presence of β-cyclodextrin. J Phys Chem, 1985, 89: 4437–4440

    Article  Google Scholar 

  81. Liu Y C, Wu L M, Liu Z L, et al. Studies on nitroxides, XII, A kinetic ESR study on the oxidation of ascorbic acid by a nitroxide. Acta Chim Sin, 1985, 43: 669–674

    Google Scholar 

  82. Liu Y C, Liu Z L, Han Z X. Radical intermediates and antioxidant activity of ascorbic acid. Rev Chem Intermed, 1988, 10: 269–289

    Article  Google Scholar 

  83. Doba T, Burton G W, Ingold K U. Antioxidant and co-antioxidant activity of vitamin C, the effect of vitamin C, either alone or in the presence of vitamin E or a water-soluble vitamin E analog, upon the peroxidation of aqueous multilamellar phospholipid liposomes. Biochim Biophys Acta, 1985, 835: 298–303

    Google Scholar 

  84. Niki E, Kawakami A, Yamamoto Y, et al. Oxidation of lipids, VIII, synergistic inhibition of oxidation of phosphatidylcholine liposome in aqueous dispersion by vitamin E and vitamin C. Bull Chem Soc Jpn, 1985, 58: 1971–1975

    Article  Google Scholar 

  85. Pryor W A, Kaufman M J, Church D F. Autoxidation of micelle-solubilized linoleic acid, relative inhibitory efficiencies of ascorbate and ascorbyl palmitate. J Org Chem, 1985, 50: 281–283

    Article  Google Scholar 

  86. Liu Y C, Han Z X, Wu L M, et al. Studies on bio-antioxidants-micellar effects on the reduction of nitroxides by vitamin C. Sci China Ser B, 1989, 32: 937–947

    Google Scholar 

  87. Liu Z L, Han Z X, Chen P, et al. Stopped-flow ESR study on the reactivity of vitamin E, vitamin C and its lipophilic derivatives towards Fremy’s salt in micellar systems. Chem Phys Lipids, 1990, 56: 73–80

    Article  Google Scholar 

  88. Liu Z L, Han Z X, Chen P, et al. Studies on bio-antioxidants. II. An ESR study on the antioxidant efficiency of ascorbyl palmitate in micelles. Chin J Chem, 1991, 9: 144–155

    Google Scholar 

  89. Liu Y C, Liu Z L, Han Z X, et al. Microenvironmental effects on the reactivity of bioantioxidants. Prog Nat Sci, 1991, 1: 297–306

    Google Scholar 

  90. Wu L M, Guo F L, Liu Z L, et al. Antioxidant activity of lipophilic vitamin C derivative in dipalmitoyl phosphatidylcholine vesicles, a stopped-flow ESR kinetic study. Res Chem Intermed, 1993, 19: 657–668

    Article  Google Scholar 

  91. Fendler E J, Fendler J H. Micellar catalysis in organic reactions: Kinetic and mechanistic implications. Adv Phys Org Chem, 1970, 8: 271–406

    Article  Google Scholar 

  92. Burkey T J, Griller D. Micellar systems as devices for enhancing the lifetimes and concentrations of free radicals. J Am Chem Soc, 1985, 107: 246–249

    Article  Google Scholar 

  93. Lei X G, Li Z Z, Liu Y C. Synthesis and properties of dialkylmethyl sulfate bilayers. J Chem Soc Chem Commun, 1990, 9: 711–712

    Article  Google Scholar 

  94. Rozantsev E G, Neiman M B. Organic radical reactions involving no free valence. Tetrahedron, 1964, 20: 131–137

    Article  Google Scholar 

  95. Liu Y C, Jiang Z Q. Studies on nitroxides, I, synthesis and reactions of piperidinyl nitroxides. Chem J Chinese Univ, 1980, 1: 71–79

    Google Scholar 

  96. Foster R. Organic Charge-Transfer Complexes. Organic Chemistry: A Series of Monographs, Vol 15. New York: Academic Press, 1969

    Google Scholar 

  97. Keute J S, Anderson D R, Koch T H. Photochemical reactivity of the di-tert-butyl nitroxide π,π* state and di-tert-butyl nitroxide halocarbon charge-transfer excited states. J Am Chem Soc, 1981, 103: 5434–5439

    Article  Google Scholar 

  98. Jiang Z Q, Wu S P, Zhang M X, et al. Studies on nitroxides, XXII, contact charge transfer complexes of piperidine nitroxides with halomethanes and their photo-induced reactions. Chem J Chinese Univ, 1989, 10: 45–50

    Google Scholar 

  99. Merbouh N, Bobbitt J M, Brueckner C. Preparation of tetrameth-ylpiperidine-1-oxoammonium salts and their use as oxidants in organic chemistry, a review. Org Prep Proced Int, 2004, 36: 3–31

    Article  Google Scholar 

  100. Merbouh N. 2,2,6,6-tetramethylpiperidine-based oxoammonium salts. Synlett, 2003, 11: 1757–1758

    Article  Google Scholar 

  101. De Nooy A E J, Besemer A C, Van Bekkum H. On the use of stable organic nitroxyl radicals for the oxidation of primary and secondary alcohols. Synthesis, 1996, 10: 1153–1174

    Article  Google Scholar 

  102. Pradhan P P, Bobbitt J M, Bailey W F. Novel reactions of oxoammonium salt with alkenes and activated aromatics. Abstracts, 35th Northeast Regional Meeting of the American Chemical Society, Binghamton, NY, United States, 2006

  103. Merbouh N, Bobbitt J M, Brueckner C. Oxoammonium salts, 9, oxidative dimerization of polyfunctional primary alcohols to esters, an interesting β oxygen effect. J Org Chem, 2004, 69: 5116–5119

    Article  Google Scholar 

  104. Yonekuta Y, Oyaizu K, Nishide H. Structural implication of oxoammonium cations for reversible organic one-electron redox reaction to nitroxide radicals. Chem Lett, 2007, 36: 866–867

    Article  Google Scholar 

  105. Israeli A, Patt M, Oron M, et al. Kinetics and mechanism of the comproportionation reaction between oxoammonium cation and hydro xylamine derived from cyclic nitroxides. Free Radic Biol Med, 2005, 38: 317–324

    Article  Google Scholar 

  106. Golubev V A, Rozantsev E G, Neiman M B. Some reactions of free iminoxyl radicals with unpaired electron participation. Izv Akad Nauk SSSR Ser Khim, 1965, 11: 1927–1936

    Google Scholar 

  107. Miyazawa T, Endo T, Shiikaski S, et al. Selective oxidation of alcohols by oxoaminium salts (R2N:O+X-). J Org Chem, 1985, 50: 1332–1334

    Article  Google Scholar 

  108. Liu Y C, Liu Z L, Guo H X. Selective oxidation of secondary alcohols in the presence of primary alcohols by an oxoammonium salt. Chem J Chin Univ, 1988, 4: 90–94

    Google Scholar 

  109. Liu Y C, Guo H X, Liu Z L. Reactivity and selectivity in the oxidation of alcohols by oxoammonium salts. Acta Chim Sin, 1991, 49: 187–192

    Google Scholar 

  110. Guo H X, Liu Y C, Liu Z L, et al. 1-Oxo-2,2,6,6-tetramethyl-4-chloropiperidinium perchlorate. A new facile oxidant for phenol coupling. Res Chem Intermed, 1992, 17: 137–143

    Google Scholar 

  111. Liu Y C, Wang W, Guo Q X. Oxidative coupling of phenols by 2,2,6,6-tetramethyl-4-methoxypiperidine oxoammonium chloride. Chin Chem Lett, 1996, 7: 790–793

    Google Scholar 

  112. Bobbitt J H, Ma Z. Oxoammonium salts, 4, a new reagent for phenol coupling. Heterocycles, 1992, 33: 641–648

    Article  Google Scholar 

  113. Mattay J, Runsink J. Additions of 1,1-diethoxyethene to 1,2-diketones. J Org Chem, 1985, 50: 2815–2818

    Article  Google Scholar 

  114. Hills L R, Ronald R C. Total synthesis of (-)-grahamimycin A1. J Org Chem, 1985, 50: 470–473

    Article  Google Scholar 

  115. Rozwadowska M D, Chrzanowska M. Synthetic entry into the secoisoquinoline alkaloids. Tetrahedron, 1985, 41: 2885–2890

    Article  Google Scholar 

  116. Golubev V A, Miklyush R V. New preparative method for the oxidation of an activated methylene group to a carbonyl one. Zh Org Khim, 1972, 8: 1356–1357

    Google Scholar 

  117. Hunter D H, Barton D H R, Motherwell W J. Oxoammonium salts as oxidizing agents: 2,2,6,6-tetramethyl-1-oxopiperidinium chloride. Tetrahedron Lett, 1984, 25: 603–606

    Article  Google Scholar 

  118. Liu Y C, Ren T, Guo Q X. Oxyfunctionalization of ketones bearing α-methylene group with piperidine oxoammonium salt, synthesis of α-diketones from monoketones. Chin J Chem, 1996, 14: 252–258

    Google Scholar 

  119. Ren T, Liu Y C, Guo Q X. Selective oxyfunctionalization of ketones using 1-oxopiperidinium salt. Bull Chem Soc Jpn, 1996, 69: 2935–2941

    Article  Google Scholar 

  120. Bard A J, Ledwith A, Shine H J. Formation, properties and reactions of cation radicals in solution. Adv Phys Org Chem, 1976, 13: 155–278

    Article  Google Scholar 

  121. Hammerich O, Parker V D. Kinetics and mechanisms of reactions of organic cation radicals in solution. Adv Phys Org Chem, 1984, 20, 55–189

    Article  Google Scholar 

  122. Lewis G N, Lipkin D. Reversible photochemical processes in rigid media, the dissociation of organic molecules into radicals and ions. J Am Chem Soc, 1942, 64: 2801–2808

    Article  Google Scholar 

  123. Walther B W, Williams F. ESR spectra and structure of the tetramethylsilane and tetramethylgermane radical cations. J Chem Soc, Chem Commun, 1982, 4: 270–272

    Article  Google Scholar 

  124. Symons M C R. The radical cation of tetramethylstannane: An electron spin resonance study. J Chem Soc, Chem Commun, 1982, 15: 869–871

    Article  Google Scholar 

  125. Liu Y C, Liu Z L, Chen P, et al. Generation of radical cations-a facile generation of radical cations via the action of an oxoammonium trifluoroacetate. Scientia Sinica, Series B, 1988, 31: 1062–1072

    Google Scholar 

  126. Liu Y C, Liu Z L, Wu L M, et al. A facile generation of radical cations via the action of nitroxides. Tetrahedron Lett, 1985, 26: 4201–4202

    Article  Google Scholar 

  127. Abakumov G A, Tikhonov V D. Interaction of a stable radical of 2,2,6,6-tetramethyl-4-piperidone 1-oxide with acids. Izv Akad Nauk SSSR Ser Khim, 1969, 4: 796–801

    Google Scholar 

  128. Golubev V A, Zhdanov R I, Gida V M, et al. Interaction of iminoxyl radicals with some inorganic acids. Izv Akad Nauk SSSR Ser Khim, 1971, 4: 853–855

    Google Scholar 

  129. Golubev V A, Sen V D, Kulyk I V, et al. Mechanism of the acid disproportionation of di-tert-alkylnitroxyl radicals. Izv Akad Nauk SSSR, Ser Khim, 1975, 10: 2235–2243

    Google Scholar 

  130. Zheng X Q, Ruan X Q, Wang W, et al. Electron transfer between N-substituted phenothiazines and the 1-oxopiperidinium ion in the presence of β-cyclodextrin. Bull Chem Soc Jpn, 1999, 72: 253–257

    Article  Google Scholar 

  131. Liu Y C, Ding Y B, Liu Z L. Preparation of single crystal and molecular structure of phenothiazine radical cation hexachloroantimonates. Acta Chim Sin, 1990, 48: 1199–1203

    Google Scholar 

  132. Wang Q G, Liu Y C, Ding Y B, et al. Crystal and molecular structure of N-methylphenothiazine radical cation hexachloroantimonate, MPT+SbCl6-. Jiegou Huaxue, 1988, 7: 153–156

    Google Scholar 

  133. Liu Y C, Ding Y B, Liu Z L, et al. Crystal and molecular structure of N-ethylphenothiazine radical cation hexachloroantimonate EPT+ SbCl 6 . Jiegou Huaxue, 1989, 8: 140–144

    Google Scholar 

  134. Uchida T, Ito M, Kozawa K. Crystal structure and related properties of phenothiazine cation radical-hexachloroantimonate, monoclinic(I) form. Bull Chem Soc Jpn, 1983, 56: 577–582

    Article  Google Scholar 

  135. Ruperez F L, Conesa J C, Soria J, et al. X-ray diffraction and electron paramagnetic resonance study of chlorpromazine cation radical. J Phys Chem, 1985, 89: 1178–1181

    Article  Google Scholar 

  136. Obata A, Yoshimori M, Yamada K, et al. Crystal and molecular structures of fenethazine hydrochloride and its cation radical-copper(II) complex salt. Bull Chem Soc Jpn, 1985, 58: 437–441

    Article  Google Scholar 

  137. Apreda M C, Cano F H, Foces-Foces C, et al. Crystal and molecular structure of the alimemazine cation radical. J Chem Soc Perkin Trans 2, 1987, 5: 575–579

    Article  Google Scholar 

  138. Kobayashi H. Crystal structure of an N-methylphenothiazine-7,7,8,8-tetracyanoquinodimethan complex. Bull Chem Soc Jpn, 1973, 46: 2945–2949

    Article  Google Scholar 

  139. Guo Q X, Liu B, Liu Y C. ESR studies on N-alkylphenothiazine radical cation salts. Chem Res Chin Univ, 1995, 11: 195–201

    Google Scholar 

  140. Clarke D, Gilbert B C, Hanson P, et al. Heterocyclic free radicals, Part 8, the influence of the structure and the conformation of the side chain on the properties of phenothiazine cation-radicals substituted at nitrogen. J Chem Soc Perkin Trans 2, 1978, 10: 1103–1110

    Article  Google Scholar 

  141. Gao X S, Feng J K, Jia Q, et al. Theoretical studies on the structures and electronic spectra of phenothiazine, N-methylphenothiazine and their radical cations. Acta Chim Sin, 1996, 54: 1159–1164

    Google Scholar 

  142. Li X S, Liu L, Mu T W, et al. A theoretical study on the structure and properties of phenothiazine derivatives and their radical cations. Res Chem Intermed, 2000, 26: 375–384

    Article  Google Scholar 

  143. Zhang H M, Ruan X Q, Guo Q X, et al. A study on one-electron oxidation of phenothiazine derivatives by piperidine oxoammonium ion in SDS micelle. Res Chem Intermed, 1998, 24: 687–693

    Article  Google Scholar 

  144. Guo Q X, Huan P, Liu B, et al. Chin Chem Lett, 1992, 3: 53–56

    Google Scholar 

  145. Liu L, Li X S, Mu T W, et al. Interplay between molecular recognition and redox properties: A theoretical study of the inclusion complexation of β-cyclodextrin with phenothiazine and its radical cation. J Inclusion Phenom Macrocyclic Chem, 2000, 38: 199–206

    Article  Google Scholar 

  146. Fromherz P. Micelle structure: A surfactant block model. Chem Phys Lett, 1981, 77: 460–466

    Article  Google Scholar 

  147. Dill K A, Flory P J. Molecular organization in micelles and vesicles. Proc Natl Acad Sci USA, 1981, 78: 676–680

    Article  Google Scholar 

  148. Ruan X Q. M Sc. degree thesis. Lanzhou University, P. R. China, 1997

  149. Marcus R A, Eyring H. Chemical and electrochemical electron-transfer theory. Ann Rev Phys Chem, 1964, 15: 155–196

    Article  Google Scholar 

  150. Wu L M, Guo X, Wang J, et al. Kinetic studies on the single electron transfer reaction between 2,2,6,6-tetramethylpiperidine oxoammonium ions and phenothiazines: The application of Marcus theory. Sci China Ser B-Chem, 1999, 42: 138–144

    Article  Google Scholar 

  151. Eberson L. Electron Transfer Reactions in Organic Chemistry. Berlin: Springer-Verlag, 1987

    Google Scholar 

  152. Kupchan S M, Liepa A J, Kameswaran V, et al. Novel nonphenol oxidative coupling. J Am Chem Soc, 1973, 95: 6861–6863

    Article  Google Scholar 

  153. Hess U, Hiller K, Schroeder R, et al. Electrochemical rearrangement of papaverine and dimerization to 12,12′-bis{2,3,9,10-tetramethox-yindolo[2,1-a]isoquinolinyl}. J Prakt Chem, 1977, 319: 568–572

    Article  Google Scholar 

  154. Ding Y B, Yang L, Liu Z L, et al. Novel oxidative coupling of papaverine by an oxoammonium salt. J Chem Res, 1994, 8: 328–329

    Google Scholar 

  155. Lightner D A, McDonagh A F. Molecular mechanisms of phototherapy for neonatal jaundice. Acc Chem Res, 1984, 17: 417–424

    Article  Google Scholar 

  156. Schmid R, Mcdonagh A F. Hyperbilirubinemia. In: Stanbury J B, Wyngaarden J B, Fredrickson D S, eds. The Metabolic Basis of Inherited Diseases. 4th ed. New York: McGraw-Hill, 1978. 1221–1257

    Google Scholar 

  157. Stocker R, Yamamoto Y, McDonagh A F, et al. Bilirubin is an antioxidant of possible physiological importance. Science, 1987, 235: 1043–1046

    Article  Google Scholar 

  158. Guo Q X, Yang L, Liu B, et al. A study on bilirubin radical cation generated by one-electron oxidation. Chem Res Chin Univ, 1992, 8: 301–304

    Google Scholar 

  159. Guo Q X, Wang J, Guo X, et al. Kinetics and mechanism of one-electron oxidation of bilirubin in dichloromethane solution. Res Chem Intermed, 1996, 22: 23–29

    Article  Google Scholar 

  160. Liu Y C, Liu Z L, Chen P, et al. Oxoammonium trifluoroacetate-a facile oxidant for the generation of radical cations. Physical Organic Chemistry 1986. A Collection of the Invited Lectures Presented at the 8th IUPAC Conference on Physical Organic Chemistry, Tokyo, Japan, 24–29 August, 1986. In: Kobayashi M ed. Studies in Organic Chemistry. Amsterdam: Elsevier, 1987, 31: 59–66

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fa Zhang.

About this article

Cite this article

Zhang, F., Liu, Y. Electron transfer reactions of piperidine aminoxyl radicals. Chin. Sci. Bull. 55, 2760–2783 (2010). https://doi.org/10.1007/s11434-010-3255-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-3255-8

Keywords

Navigation