Skip to main content
Log in

A peculiar composite M- and W-type REE tetrad effect: Evidence from the Shuiquangou alkaline syenite complex, Hebei Province, China

  • Article
  • Geochemistry
  • Published:
Chinese Science Bulletin

Abstract

A new type of REE tetrad effect, a composite M- and W-type, was recognized in the K-feldsparthized and silicificated Shuiquangou alkaline syenites, Dongping, Hebei Province. Different analytical methods such as ICP-MS and isotopic dilution thermal ion mass spectrometer were exploited to verify the REE concentrations of the samples in three laboratories in China, France and Korea. The results are reliable and consistent within errors. In situ quantitative analysis of REE concentrations of individual zircons and apatites extracted from the very same sample has shown that fractional crystallization of magma and the superimposed hydrothermal alteration might have taken place in at least two-stage hydrothermal activities to generate the composite M- and W-type REE tetrad effect. The coexisting melt and aqueous phases, the superimposed alteration by volatile (Cl, CO2) and Si, K, Al-enriched high temperature hydrothermal fluids might be the important facts for this new MW-type of REE tetrad effect. In addition, the peculiar MW-type tetrad effect might be an indicator for Au mineralization of reworked plutons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henderson P. General geochemical properties and abundances of the rare earth elements. In: Henderson P, ed. Rare Earth Element Geochemistry. Amsterdam: Elesevier, 1984. 8–9

    Google Scholar 

  2. Masuda A. Regularities in variation of relative abundances of lanthanide elements and an attempt to analyse separation-index patterns of some minerals. J Earth Sci Nagoya Univ, 1962, 10: 173–187

    Google Scholar 

  3. Coryell C G, Chase J W, Winchester J W. A procedure for geochemical intepratation of terristerial rare-earth abundance patterns. J Geophys Res, 1963, 68: 559–566

    Article  Google Scholar 

  4. Masuda A, Ikeuchi Y. Lanthanide tetrad effect observed in marine environment. Geochem J, 1979, 13: 19–22

    Google Scholar 

  5. Hidaka H, Holliger P, Shimizu H, et al. Lanthanide tetrad effect observed in the Oklo and ordinary uraninites and its application for their forming processes. Geochem J, 1992, 26: 337–346

    Google Scholar 

  6. Akagi T, Shabani M B, Masuda A. Lanthanide tetrad effect in kimuraite [CaY2(CO3)4·6H2O]: Implication for a new geochemical index. Geochim Cosmochim Acta, 1993, 57: 2899–2905

    Article  Google Scholar 

  7. Takahashi Y, Yoshida H, Sato N, et al. W-and M-type tetrad effects in REE patterns for water-rock systems in the Tono uranium deposit, central Japan. Chem Geol, 2002, 184: 311–335

    Article  Google Scholar 

  8. Zhao Z H. Preliminary report on the REE tetrad effect in granites (in Chinese). Geol Geochem, 1988, 1: 71–72

    Google Scholar 

  9. Zhao Z H. REE tetrad effect-an important indicator for water/melts (rock) interaction (in Chinese). In: Proceedings of the 3rd Congress on Mineralogy, Petrology and Geochemistry Symposium of China. Chongqing: Chongqing Branch of Science and Technology Press of China, 1988. 47–49

    Google Scholar 

  10. Zhao Z H, Masuda A. REE evidence for warter-rock interaction in tin/tungsten granites. In: The Fifth International Symposium on Tin/Tungsten Granites in Southeast Asia and the Western Pacific, Matsue, Japan (Extended abstract), 1988. 257–258

  11. Masuda A, Kawakami O, Dohmoto Y, et al. Lanthanide tetrad effects in nature: two mutually opposite types, W and M. Geochem J, 1987, 21: 119–124

    Google Scholar 

  12. Fideslis I, Siekierski S. The regularities in stability constraints of some rare earth complexes. J Inorg Nucl Chem, 1966, 28: 185–188

    Article  Google Scholar 

  13. Peppard D F, Mason G W, Lewey S. A tetrad effect in the liquid-liquid extraction ordering of lanthanides (III). J Inorg Nucl Chem, 1969, 31: 2271–2272

    Article  Google Scholar 

  14. Zhao Z H, Masuda A, Shabani M B. Tetrad effect in rare metal granites (in Chinese). Geochimica, 1992, 3: 221–233

    Google Scholar 

  15. Zhao Z H, Masuda A, Shabani M B. REE tetrad effects in rare metal granite. Chin J Geochem, 1993, 12: 206–219

    Article  Google Scholar 

  16. Jolliff B L, Papike J J, Shearer C K. Inter- and intro-crystal REE variations in apatite from the Bob Ingersoll Pegmatite, Black Hills, South Dakota. Geochim Cosmochim Acta, 1989, 53: 429–441

    Article  Google Scholar 

  17. Yurimoto H, Duke E F, Opapike J J, et al. Are discontinuous chondritenormalized REE patterns in pegmatic granite systems the results of monazite fractionation? Geochim Cosmochim Acta, 1990, 54: 2141–2145

    Article  Google Scholar 

  18. McLennan S M. Rare earth element geochemistry and the “tetrad” effect. Geochim Cosmochim Acta, 1994, 58: 2025–2033

    Article  Google Scholar 

  19. Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf and lanthanide tetrad effect. Contrib Mineral Petrol, 1996, 123: 323–333

    Article  Google Scholar 

  20. Irber W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho and Zr/Hf of evolving peraluminous granite suits. Geochim Cosmochim Acta, 1999, 63: 489–508

    Article  Google Scholar 

  21. Zhao Z H, Xiong X L, Han X D. Discussion on the forming of REE tetrad effect in granites (in Chinese). Sci China Ser D, 1999, 29: 331–338

    Google Scholar 

  22. Zhao Z H, Xiong X L, Han X D, et al. Controls on the REE tetrad effect in granites: Evidence from the Qianlishan and Baerzhe granites, China. Geochim J, 2002, 36: 527–543

    Google Scholar 

  23. Moneck T, Kemfe U, Monecke J, et al. tetrad effect in rare earth element distribution patterns: A method of quantification with application to rock and mineral samples from granitic-related rare metal deposits. Geochim Cosmochim Acta, 2002, 66: 1185–1196

    Article  Google Scholar 

  24. Liu C Q, Zhang H. The lanthanide tetrad effect in apatite from the Altay No.3 pegmatite, Xinjiang, China: An intrinsic feature of the pegmatite magma. Chem Geol, 2005, 214: 61–77

    Article  Google Scholar 

  25. Ji J F. M-type REE tetrad effect of low temperature stibnite and its geochemical significances in west Hunan (in Chinese). Bull Mineral Petrol Geochem, 1993, 70

  26. Peng J T, Hu RZ, Zhao J H, et al. REE geochemistry of scheelites in W-Sb-Au deposits in west Hunan (in Chinese). Geochimica, 2005, 34: 115–122

    Google Scholar 

  27. Hong W X, He S Y, Huang S H, et al. W-type of REE tetrad effect of monazite and its geological significance (in Chinese). Prog Nat Sci, 1999, 9(Supp): 1287–1290

    Google Scholar 

  28. Liu C Q, Masuda A, Okada A, et al. Ageochemical study of loess and desert sand in northern China: Implication for continental crust weathering and composition. Chem Geol, 1993, 106: 359–374

    Article  Google Scholar 

  29. Veksler I V, Dorfman A M, Kamenetsky M, et al. Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochim Cosmoch Acta, 2005, 69: 2847–2860

    Article  Google Scholar 

  30. Mayanovic R A, Anderson A J, Bassett W A, et al. The structure and stability of aqueous rare-earth elements in hydrothermal fluids: New results on neodymium (III) aqua and chloroaqua complex in aqueous solutions to 500 and 520 MPa. Chem Geol, 2009, 259: 30–38

    Article  Google Scholar 

  31. Zhao Z H, Bao Z W, Lee Seung-Gu, et al. A composite M-With W-type of REE tetrad effect in a north China alkaline complex. Geochim Cosmochim Acta, 2008, 72(Supp): 11095

    Google Scholar 

  32. Liu Y, Liu H C, Li X H. Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS. Geochimica, 1996, 25: 552–558

    Google Scholar 

  33. Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircons by laser ablation-inductively coupled plusmamass spectrometry. Geos Geoanal Res, 2004, 28: 1511–1520

    Google Scholar 

  34. Guo C J. Mineralogical Chemistry of Rare Elements (in Chinese). Beijing: Science Press, 1965. 227–228

    Google Scholar 

  35. Wang Z G, Yu X Y, Zhao Z H. Rare Element Geochemistry (in Chinese). Beijing: Science Press, 1989. 58–62

    Google Scholar 

  36. Watson E B, Green T H. Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth Planet Sci Lett, 1981, 56: 408–421

    Article  Google Scholar 

  37. Fujimaki H. Partition coefficients of Hf, Zr and REE between zircon, apatite and liquid. Contrib Mineral Petrol, 1986, 94: 42–45

    Article  Google Scholar 

  38. Ayers J C, Watson E B. Apatite/fluid partitioning of rare-earth elements and strontium: experimental results at 1.0 GPa and 1000°C and applications to models of fluid-rock interaction. Chem Geol, 1993, 110: 299–314

    Article  Google Scholar 

  39. Rubin J N, Henry C D, Price J G. Hydrothermal zircons and zircon overgrowths, Sierra Blanca Peaks, Texas. Am Mineral, 1989, 74: 865–869

    Google Scholar 

  40. Kerrich R, King R. Hydrothermal zircon and baddeleyite in Val-Dor Archean mesothermal gold deposits: Characteristics, compositions and fluid-inclusion properties, with implications for timing of primary gold mineralization. Can J Earth Sci, 1993, 30: 2334–2352

    Google Scholar 

  41. Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar J M, Hoskin P W O, eds. Zircon. Rev Mineral Geochem, 2003, 53: 27–62

  42. Hoskin P W O. Trace-element composition of hydrothermal zircon and the alteration of hadean zircon from the Jack Hills, Australia. Geochim Cosmochim Acta, 2005, 69: 637–648

    Article  Google Scholar 

  43. Fu B, Page F Z, Cavosie A J, et al. Ti-in-zircon thermometry: Applications and limitations. Contrib Mineral Petrol, 2008, 156: 197–215

    Article  Google Scholar 

  44. Hoskin P W O. Minor and trace element analysis of natural zircon (ZrSiO4) by SIMS and laser ablation ICPMS: A consideration and comparison of two broadly competitive techniques. J Trace Microprobe Tech, 1998, 16: 301–326

    Google Scholar 

  45. Wu Y B, Zheng Y F. Constraints on the interpretation of Zircon U-Pb dating based on the investigation of the zircon mineralogy (in Chinese). Chin Sci Bull, 2004, 16: 1589–1603

    Google Scholar 

  46. Xie L, Wang R C, Wang D Z et al. Hydrothermal zircon—A unusual zircon (in Chinese). In: Chen J, ed. Prog Geol Geochemi. Nanjing: Nanjing University Press, 2006. 325–333

    Google Scholar 

  47. Song G R, Zhao Z H. Geology of Dongping Alkaline Complexhosted Gold Deposit in Hebei Province (in Chinese). Beijing: Seismic Publishing House, 1996. 1–170

    Google Scholar 

  48. Miao L C, Qiu Y M, McNaughton N, et al. SHRIMP U-Pb zircon geochronology of granitoids from Dongping area, Hebei Province, China: Constraints on tectonic evolution and geodynamic setting for gold metallogeny. Ore Geol Rev, 2002, 19: 187–204

    Article  Google Scholar 

  49. Li H M, Li H K, Lu S N, et al. Determination of age of gold mineralization of Donping gold deposits by U-Pb dating hydrothermal zircons from ore veins (in Chinese). Acta Geosci Sin, 1997, 18(Supp): 176–178

    Google Scholar 

  50. Jiang N, Liu Y S, Zhou W G, et al. Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China craton. Geochim Cosmochim Acta, 2007, 71: 2591–2608

    Article  Google Scholar 

  51. Yang J H, Wu F Y, Shao J A, et al. In-situ U-Pb dating and Hf isotopic analyses of zircons from volcanic rocks of Houcheng and Zhangjiakou formations in the Zhangxuan area (in Chinese). Earth Sci J Chin Univ Geosci, 2006, 31: 71–80

    Google Scholar 

  52. Lu D L, Luo X Q, Wang J J, et al. Geochronological study on the Dongping gold deposit (in Chinese). Mineral Deposits, 1993, 12: 182–188

    Google Scholar 

  53. Hu D X, Luo G L. 40Ar/39Ar age of Au-bearing quartz veins in the Zhangjiakou and Xuanhua area (in Chinese). Sci Geol, 1994, 29: 151–158

    Google Scholar 

  54. Wang R R. The characteristics and genesis of the felsic alkali complex, Jinjiazhuang, Hebei (in Chinese). J Guilin Coll Geol, 1992, 12: 12–20

    Google Scholar 

  55. Jiang S H, Nie F J. 40Ar/39Argeochronology of the Shuiquangou alkaline complex and related gold deposit, Northwest Hebei, China (in Chinese). Geol Rev, 2000, 46: 621–627

    Google Scholar 

  56. Xu X W, Cai X P, Liu Y L, et al. Laser probe 40Ar/39Arages of metasomatic K-feldspar from the Hougou gold deposit, northwest Hebei Province. Sci China Ser D-Earth Sci, 2002, 45: 559–564

    Article  Google Scholar 

  57. Hart C J R, Goldfarb R J, Qiu Y M, et al. Gold deposits of the northern margin of the North China Craton: Multiple late Paleozoic-mesozoic mineralizing events. Miner Depos, 2002, 37: 326–351

    Google Scholar 

  58. Mo C H. The geochemistry and genesis of gold deposits in Zhangjiakou area (in Chinese). Dissertation for the Doctoral Degree. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 1996, 48

    Google Scholar 

  59. Xiang S Y, Ye J L, Liu J. The genesis of Hougou-Shuiquangou alkalisyenite rock mass and the relation between it and the mineralization of gold deposits (in Chinese). Geoscience, 1992, 6: 55–62

    Google Scholar 

  60. Song R X, et al. A research report on the characteristics, related Au mineralization and prospect of Shuiquangou-Dananshan monzonite complex in Zhangjiakou area (in Chinese). 1992

  61. Wang Y, Jiang X M, Shang M Y, et al. The genesis and characteristics of gold deposits related with alkaline rocks in northwest Hebei (in Chinese). Geol Rev, 1994, 4: 368–376

    Google Scholar 

  62. Zhang Z C. Characteristics of H and O isotopes and fluid evolution in Dongping gold deposit (in Chinese). Gold Geol, 1996, 2: 36–41

    Google Scholar 

  63. Deng N D. Geology and prospect of gold deposits in Zhangjiakou area. A research report, 1988

  64. Fan H R, Xie Y H, Zhai M G. Ore-forming fluids in the Dongping gold deposit, northwest Hebei Province. Sci China Ser D-Earth Sci, 2001, 44: 748–757

    Article  Google Scholar 

  65. Alderton D H M, Pearce J A, Potts P J. Rare earth element mobility during granite alteration: Evidence from southwest England. Earth Planet Sci Lett, 1980, 49: 149–165

    Article  Google Scholar 

  66. Humphris S E. The mobility of the rare earth element in crust. In: Henderson P, ed. Rare Earth Element Geochemistry. Amsterdam: Elsevier, 1984. 317–342

    Google Scholar 

  67. Grauch R I. Rare earth elements in metamorphic rocks. In: Lipin B R, McKay G A, eds. Geochemistry and rare earth elements. Rev Mineral, 1989, 21: 147–167

  68. Bao Z W, Zhao Z H. Pare-earth element mobility during ore-forming process of Dongping gold deposit (in Chinese). Geochimica, 1998, 27: 81–90

    Google Scholar 

  69. Wood S A. The aqueous geochemistry of the rare-earth elements and yttrium 2. Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure. Chem Geol, 1990, 88: 99–125

    Article  Google Scholar 

  70. Schaltegger U, Fanning C M, Gunther D, et al. Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contrib Mineral Petrol, 1999, 134: 186–201

    Article  Google Scholar 

  71. Hoskin P W O, Black J P. Metamorphic zircon formation by solid state recrystallization of protolith igneous zircon. J Metaph Geol, 2000, 18: 423–439

    Article  Google Scholar 

  72. Rubattu D, Willianms I S, Buick I S. Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contrib Mineral Petrol, 2001, 140: 458–468

    Article  Google Scholar 

  73. Rubattu D. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol, 2002, 184: 123–138

    Article  Google Scholar 

  74. Kebede T, Horie K, Hidaka H, et al. Zircon micro vein in peralkaline granitic gneiss, western Ethiopia: Origin, SHRIMP U-Pb geochronology and trace element investigations. Chem Geol, 2007, 242: 76–102

    Article  Google Scholar 

  75. Whitehouse M J, Kamber B S. On the overabundance of light rare earth elements in terrestrial zircons and its implications for Earth’s earliest magmatic differentiation. Earth Planet Sci Lett, 2002, 204: 333–346

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhenHua Zhao.

About this article

Cite this article

Zhao, Z., Bao, Z. & Qiao, Y. A peculiar composite M- and W-type REE tetrad effect: Evidence from the Shuiquangou alkaline syenite complex, Hebei Province, China. Chin. Sci. Bull. 55, 2684–2696 (2010). https://doi.org/10.1007/s11434-010-3231-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-3231-3

Keywords

Navigation