Skip to main content
Log in

Advances in research of mammalian vomeronasal pheromone perception and genetic components unique to vomeronasal signal transduction pathway

  • Review
  • Animal Genetics
  • Published:
Chinese Science Bulletin

Abstract

The recognition and perception of chemical signals from environments are very important for the survival of organisms. In mammals, general chemical signals are mainly detected by the main olfactory system (MOS), while pheromones are primarily perceived by the vomeronasal system (VNS). Pheromones are chemicals released and recognized by individuals within the same species, which then induce physiological and behavioral changes in social and sexual activities. In this review, we focus on the recent advances on research in mammalian vomeronasal pheromone perception and those genetic components unique to vomeronasal signal transduction pathway, including vomeronasal receptor V1R and V2R gene families as well as transient receptor potential channel 2 gene (TRPC2), trying to shed light on further study of the molecular mechanisms of mammalian pheromone perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dulac C, Torello A T. Molecular detection of pheromone signals in mammals: From genes to behaviour. Nat Rev Neurosci, 2003, 4: 551–562

    Article  Google Scholar 

  2. Karlson P, Luscher M. Pheromones: A new term for a class of biologically active substances. Nature, 1959, 183: 55–56

    Article  Google Scholar 

  3. Keverne E B. The vomeronasal organ. Science, 1999, 286: 716–720

    Article  Google Scholar 

  4. Schaal B, Coureaud G, Langlois D, et al. Chemical and behavioural characterization of the rabbit mammary pheromone. Nature, 2003, 424: 68–72

    Article  Google Scholar 

  5. Liman E R, Corey D P, Dulac C. TRP2: A candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci USA, 1999, 96: 5791–5796

    Article  Google Scholar 

  6. Liberles S D, Horowitz L F, Kuang D, et al. Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc Natl Acad Sci USA, 2009, 106: 9842–9847

    Article  Google Scholar 

  7. Rivière S, Challet L, Fluegge D, et al. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature, 2009, 459: 574–577

    Article  Google Scholar 

  8. Zufall F, Kelliher K R, Leinders-Zufall T. Pheromone detection by mammalian vomeronasal neurons. Microsc Res Tech, 2002, 58: 251–260

    Article  Google Scholar 

  9. Loconto J, Papes F, Chang E, et al. Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell, 2003, 112: 607–618

    Article  Google Scholar 

  10. Dulac C, Axel R. A novel family of genes encoding putative pheromone receptors in mammals. Cell, 1995, 83: 195–206

    Article  Google Scholar 

  11. Ryba N J, Tirindelli R. A new multigene family of putative pheromone receptors. Neuron, 1997, 19: 371–379

    Article  Google Scholar 

  12. Herrada G, Dulac C. A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell, 1997, 90: 763–773

    Article  Google Scholar 

  13. Matsunami H, Buck L B. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell, 1997, 90: 775–784

    Article  Google Scholar 

  14. Zhang J J, Webb D M. Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates. Proc Natl Acad Sci USA, 2003, 100: 8337–8341

    Article  Google Scholar 

  15. Liman E R, Innan H. Relaxed selective pressure on an essential component of pheromone transduction in primate evolution. Proc Natl Acad Sci USA, 2003, 100: 3328–3332

    Article  Google Scholar 

  16. Young J M, Kambere M, Trask B J, et al. Divergent V1R repertoires in five species: Amplification in rodents, decimation in primates, and a surprisingly small repertoire in dogs. Genome Res, 2005, 15: 231–240

    Article  Google Scholar 

  17. Grus W E, Shi P, Zhang J J. Largest vertebrate vomeronasal type 1 receptor gene repertoire in the semiaquatic platypus. Mol Biol Evol, 2007, 24: 2153–2157

    Article  Google Scholar 

  18. Young J M, Trask B J. V2R gene families degenerated in primates, dog and cow, but expanded in opossum. Trends Genet, 2007, 23: 212–215

    Article  Google Scholar 

  19. Jacobson L, Trotier D, Doving K B. Anatomical description of a new organ in the nose of domesticated animals by Ludvig Jacobson. Chem Senses, 1998, 23: 743–754

    Article  Google Scholar 

  20. Vaccarezza O L, Sepich L N, Tramezzani J H. The vomeronasal organ of the rat. J Anat, 1981, 132: 167–185

    Google Scholar 

  21. Dulac C. Sensory coding of pheromone signals in mammals. Curr Opin Neurobiol, 2000, 10: 511–518

    Article  Google Scholar 

  22. Bertmar G. Evolution of vomeronasal organs in vertebrates. Evolution, 1981, 35: 359–366

    Article  Google Scholar 

  23. Eisthen H L. Evolution of vertebrate olfactory systems. Brain Behav Evol, 1997, 50: 222–233

    Article  Google Scholar 

  24. Meisami E, Bhatnagar K P. Structure and diversity in mammalian accessory olfactory bulb. Microsc Res Tech, 1998, 43: 476–499

    Article  Google Scholar 

  25. Vandenbergh J G, Whitsett J M, Lombardi J R. Partial isolation of a pheromone accelerating puberty in female mice. J Reprod Fertil, 1975, 43: 515–523

    Article  Google Scholar 

  26. Singer A G, Macrides F, Clancy A N, et al. Purification and analysis of a proteinaceous aphrodisiac pheromone from hamster vaginal discharge. J Biol Chem, 1986, 261: 13323–13326

    Google Scholar 

  27. Cavaggioni A, Mucignat-Caretta C. Major urinary proteins, alpha (2U)-globulins and aphrodisin. Biochim Biophys Acta, 2000, 1482: 218–228

    Google Scholar 

  28. Bocskei Z, Groom C R, Flower D R, et al. Pheromone binding to two rodent urinary proteins revealed by X-ray crystallography. Nature, 1992, 360: 186–188

    Article  Google Scholar 

  29. Bacchini A, Gaetani E, Cavaggioni A. Pheromone binding proteins of the mouse, Mus musculus. Experientia, 1992, 48: 419–421

    Article  Google Scholar 

  30. Ma W, Miao Z, Novotny M V. Induction of estrus in grouped female mice (Mus domesticus) by synthetic analogues of preputial gland constituents. Chem Senses, 1999, 24: 289–293

    Article  Google Scholar 

  31. Novotny M V, Ma W, Wiesler D, et al. Positive identification of the puberty-accelerating pheromone of the house mouse: The volatile ligands associating with the major urinary protein. Proc Biol Sci, 1999, 266: 2017–2022

    Article  Google Scholar 

  32. Leinders-Zufall T, Lane A P, Puche A C, et al. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature, 2000, 405: 792–796

    Article  Google Scholar 

  33. Chandrashekar J, Mueller K L, Hoon M A, et al. T2Rs function as bitter taste receptors. Cell, 2000, 100: 703–711

    Article  Google Scholar 

  34. Del Punta K, Leinders-Zufall T, Rodriguez I, et al. Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature, 2002, 419: 70–74

    Article  Google Scholar 

  35. Boschat C, Pelofi C, Randin O, et al. Pheromone detection mediated by a V1r vomeronasal receptor. Nat Neurosci, 2002, 5: 1261–1262

    Article  Google Scholar 

  36. Pantages E, Dulac C. A novel family of candidate pheromone receptors in mammals. Neuron, 2000, 28: 835–845

    Article  Google Scholar 

  37. Rodriguez I, Del Punta K, Rothman A, et al. Multiple new and isolated families within the mouse superfamily of V1r vomeronasal receptors. Nat Neurosci, 2002, 5: 134–140

    Article  Google Scholar 

  38. Yang H, Shi P, Zhang Y P, et al. Composition and evolution of the V2r vomeronasal receptor gene repertoire in mice and rats. Genomics, 2005, 86: 306–315

    Article  Google Scholar 

  39. Mombaerts P. Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci, 2004, 5: 263–278

    Article  Google Scholar 

  40. Clapham D E, Runnels L W, Strubing C. The TRP ion channel family. Nat Rev Neurosci, 2001, 2: 387–396

    Article  Google Scholar 

  41. Minke B. The TRP channel and phospholipase C-mediated signaling. Cell Mol Neurobiol, 2001, 21: 629–643

    Article  Google Scholar 

  42. Minke B, Cook B. TRP channel proteins and signal transduction. Physiol Rev, 2002, 82: 429–472

    Google Scholar 

  43. Freichel M, Vennekens R, Olausson J, et al. Functional role of TRPC proteins in vivo: Lessons from TRPC-deficient mouse models. Biochem Biophys Res Commun, 2004, 322: 1352–1358

    Article  Google Scholar 

  44. Vazquez G, Wedel B J, Aziz O, et al. The mammalian TRPC cation channels. Biochim Biophys Acta, 2004, 1742: 21–36

    Article  Google Scholar 

  45. Wes P D, Chevesich J, Jeromin A, et al. TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci USA, 1995, 92: 9652–9656

    Article  Google Scholar 

  46. Ranganathan R, Malicki D M, Zuker C S. Signal transduction in Drosophila photoreceptors. Annu Rev Neurosci, 1995, 18: 283–317

    Article  Google Scholar 

  47. Niemeyer B A, Suzuki E, Scott K, et al. The Drosophila light-activated conductance is composed of the two channels TRP and TRPL. Cell, 1996, 85: 651–659

    Article  Google Scholar 

  48. Holy T E, Dulac C, Meister M. Responses of vomeronasal neurons to natural stimuli. Science, 2000, 289: 1569–1572

    Article  Google Scholar 

  49. Harteneck C, Plant T D, Schultz G. From worm to man: Three subfamilies of TRP channels. Trends Neurosci, 2000, 23: 159–166

    Article  Google Scholar 

  50. Spehr M, Hatt H, Wetzel C H. Arachidonic acid plays a role in rat vomeronasal signal transduction. J Neurosci, 2002, 22: 8429–8437

    Google Scholar 

  51. Grus W E, Zhang J J. Origin and evolution of the vertebrate Vomeronasal system viewed through system-specific genes. Bioessays, 2006, 28: 709–718

    Article  Google Scholar 

  52. Grus W E, Zhang J J. Origin of the genetic components of the Vomeronasal system in the common ancestor of all extant vertebrates. Mol Biol Evol, 2009, 26: 407–419

    Article  Google Scholar 

  53. Hoon M A, Adler E, Lindemeier J, et al. Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell, 1999, 96: 541–551

    Article  Google Scholar 

  54. Keller A, Vosshall L B. Better smelling through genetics: Mammalian odor perception. Curr Opin Neurobiol, 2008, 18: 364–369

    Article  Google Scholar 

  55. Grus WE, Shi P, Zhang Y P, et al. Dramatic variation of the vomeronasal pheromone receptor gene repertoire among five orders of placental and marsupial mammals. Proc Natl Acad Sci USA, 2005, 102: 5767–5772

    Article  Google Scholar 

  56. Shi P, Zhang J J. Comparative genomic analysis identifies an evolutionary shift of Vomeronasal receptor gene repertoires in the vertebrate transition from water to land. Genome Res, 2007, 17: 166–174

    Article  Google Scholar 

  57. Naito T, Saito Y, Yamamoto J, et al. Putative pheromone receptors related to the Ca2+-sensing receptor in Fugu. Proc Natl Acad Sci USA, 1998, 95: 5178–5181

    Article  Google Scholar 

  58. Swaney W T, Keverne E B. The evolution of pheromonal communication. Behavioural Brain Res, 2009, 200: 239–247

    Article  Google Scholar 

  59. Rouquier S, Blanher A, Giorgi D. The olfactory receptor gene repertoire in primates and mouse: Evidence for reduction of the functional fraction in primates. Proc Natl Acad Sci USA, 2000, 97: 2870–2874

    Article  Google Scholar 

  60. Hunt D M, Dulai K S, Cowing J A, et al. Molecular evolution of trichromacy. Vision Res, 1998, 38: 3299–3306

    Article  Google Scholar 

  61. Nathans J. The evolution and physiology of human color vision: Insights from molecular genetic studies of visual pigments. Neuron, 1999, 24: 299–312

    Article  Google Scholar 

  62. Hudson R, Distel H. Pheromonal release of suckling in rabbits does not depend on the vomeronasal organ. Physiol Behav, 1986, 37: 123–128

    Article  Google Scholar 

  63. Dorries K M, Adkins-Regan E, Halpern B P. Sensitivity and behavioral responses to the pheromone androstenone are not mediated by the vomeronasal organ in domestic pigs. Brain Behav Evol, 1997, 49: 53–62

    Article  Google Scholar 

  64. Sam M, Vora S, Malnic B, et al. Neuropharmacology. Odorants may arouse instinctive behaviours. Nature, 2001, 412: 142

    Google Scholar 

  65. Trinh K, Storm D R. Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium. Nat Neurosci, 2003, 6: 519–525

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Yu or YaPing Zhang.

Additional information

These authors contributed equally to this work

About this article

Cite this article

Yang, H., Meng, X., Yu, L. et al. Advances in research of mammalian vomeronasal pheromone perception and genetic components unique to vomeronasal signal transduction pathway. Chin. Sci. Bull. 55, 2473–2478 (2010). https://doi.org/10.1007/s11434-010-3141-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-3141-4

Keywords

Navigation