Skip to main content
Log in

Magnetic properties of perpendicularly orientated L10 FePt nanoparticles

  • Articles
  • Condensed Matter Physics
  • Published:
Chinese Science Bulletin

Abstract

L10 FePt films were deposited on MgO (001) substrates heated to 700°C by magnetron sputtering. Assisted by the misfit of lattice between film and substrate, strong (001) texture was formed. The film at nominal thickness t N = 5 nm was composed of nanoparticles with a size of ∼70 nm, and showed a high coercivity of ∼105 kOe at 4.2 K. At t N =∼50 nm, as the film changed from discontinuous to continuous, the coercivity dropped about one order of magnitude. Micromagnetic simulation implies that the magnetization reversal is a vortex-like nuclear type. The ideal coercivity of a separated single-domain L10 FePt nanoparticle with a size of 70 nm× 70 nm× 5 nm is ∼121 kOe. This tells us that the experimental coercivity has nearly reached the limit of ideal single crystalline nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiao M, Do H, Weresin W, et al. Recording studies of perpendicular media leading to 230 Gb/in2. J Appl Phys, 2006, 99: 08E712

    Article  Google Scholar 

  2. Lodder J C. Magnetic structures in Co-Cr media for perpendicular magnetic recording. J Magn Magn Mater, 1996, 159: 238–248

    Article  Google Scholar 

  3. Ouchi K. Recent advancements in perpendicular magnetic recording. IEEE Trans Magn, 2001, 37: 1217–1222

    Article  Google Scholar 

  4. Wood R. The feasibility of magnetic recording at 1 Terabit per square inch. IEEE Trans Magn, 2000, 36: 36–42

    Article  Google Scholar 

  5. Zhuang Z. Effects of stoichiometry on the magnetic and structural properties of perpendicular barium ferrite thin film media. IEEE Trans Magn, 2000, 36: 2405–2407

    Article  Google Scholar 

  6. Speliotis D E. Magnetic recording beyond the first 100 years. J Magn Magn Mater, 1999, 193: 29–35

    Article  Google Scholar 

  7. Weller D, Moser A, Folks L, et al. High K u materials approach to 100 Gbits/in2. IEEE Trans Magn, 2000, 36: 10–15

    Article  Google Scholar 

  8. Verdes C, Chantrell R W, Satoh A, et al. Self-organization, orientation and magnetic properties of FePt nanoparticle arrays. J Magn Magn Mater, 2006, 304: 27–31

    Article  Google Scholar 

  9. Kuo C M, Kuo P C, Wu H C. Microstructure and magnetic properties of Fe100-x Ptx alloy films. J Appl Phys, 1999, 85: 2264–2269

    Article  Google Scholar 

  10. Xu Y F, Chen J S, Wang J P. In situ ordering of FePt thin films with face-centered-tetragonal (001) texture on Cr100-x Rux underlayer at low substrate temperature. Appl Phys Lett, 2002, 80: 3325–3327

    Article  Google Scholar 

  11. Suzuki T, Honda N, Ouchi K. Magnetization reversal process in polycrystalline ordered Fe-Pt (001) thin films. J Appl Phys, 1999, 85: 4301–4303

    Article  Google Scholar 

  12. Jeong S, Hsu Y N, Laughlin D E, et al. Magnetic properties of nanostructured CoPt and FePt thin films. IEEE Trans Magn, 2000, 36: 2336–2338

    Article  Google Scholar 

  13. Zeng H, Yan M L, Sellmyer D J. Orientation-controlled nonepitaxial L10 CoPt and FePt films. Appl Phys Lett, 2002, 80: 2350–2352

    Article  Google Scholar 

  14. Coffey K, Parker M A, Howard J K. High anisotropy L10 thin films for longitudinal recording. IEEE Trans Magn, 1995, 31: 2737–2739

    Article  Google Scholar 

  15. Platt C L, Wierman K W, Svedberg E B, et al. L10 ordering and microstructure of FePt thin films with Cu, Ag, and Au additive. J Appl Phys, 2002, 92: 6104–6109

    Article  Google Scholar 

  16. Maeda T, Kai T, Kikitsu A, et al. Reduction of ordering temperature of an FePt ordered alloy by addition of Cu. Appl Phys Lett, 2002, 80: 2147–2149

    Article  Google Scholar 

  17. Luo C P, Sellmyer D J. Magnetic properties and structure of Fe/Pt thin films. IEEE Trans Magn, 1995, 31: 2764–2766

    Article  Google Scholar 

  18. Shima T, Moriguchi T, Mitani S, et al. Low temperature fabrication of L10 ordered FePt alloy by alternate monatomic layer deposition. Appl Phys Lett, 2002, 80: 288–290

    Article  Google Scholar 

  19. Lin J J, Zhang T, Lee P, et al. Magnetic trapping induced low temperature phase transition from fcc to fct in pulsed laser deposition of FePt:Al2O3 nanocomposite thin films. Appl Phys Lett, 2007, 91: 063120

    Article  Google Scholar 

  20. Pan Z Y, Lin J J, Zhang T, et al. Lowering of L10 phase transition temperature of FePt thin films by single shot H+ ion exposure using plasma focus device. Thin Solid Films, 2009, 517: 2753–2757

    Article  Google Scholar 

  21. Zhang Z G, Singh A K, Yin J H, et al. Double-layered perpendicular magnetic recording media of granular-type FePt-MgO films. J Magn Magn Mater, 2005, 287: 224–228

    Article  Google Scholar 

  22. Suzuki T, Honda N, Ouchi K. Fe-Pt media for perpendicular magnetic recording. IEEE Trans Magn, 1999, 35: 2748–2750

    Article  Google Scholar 

  23. Jeong S K, McHenry M E, Laughlim D E. Growth and characterization of L10 FePt and CoPt (001) textured polycrystalline thin films. IEEE Trans Magn, 2001, 37: 1309–1311

    Article  Google Scholar 

  24. Zhang Z G, Kang K, Suzuki T. FePt (001) texture development on an Fe-Ta-C magnetic soft underlayer with SiO2/MgO as an intermediate layer. Appl Phys Lett, 2003, 83: 1785–1787

    Article  Google Scholar 

  25. Kim H, Lee S. Texture development and magnetic properties of sputter-deposited FePt-MgO nanocomposite films. J Appl Phys, 2005, 97: 10H304

    Article  Google Scholar 

  26. Sun S, Murray C B, Weller D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 2000, 287: 1989–1992

    Article  Google Scholar 

  27. Sun S, Fullerton E E, Weller D, et al. Compositionally controlled FePt nanoparticle materials. IEEE Trans Magn, 2001, 37: 1239–1243

    Article  Google Scholar 

  28. Hu J F, Chen J S, Lim B C, et al. Underlayer diffusion-induced enhancement of coercivity in high anisotropy FePt thin films. J Magn Magn Mater, 2008, 320: 3068–3070

    Article  Google Scholar 

  29. Xu X H, Wu H S, Li X L, et al. Structure and magnetic properties of FePt and FePt/C thin films by post-annealing. Physica B, 2004, 348: 436–439

    Article  Google Scholar 

  30. Watanabe M, Masumoto T, Ping D H, et al. Microstructure and magnetic properties of FePt-Al-O granular thin films. Appl Phys Lett, 2000, 76: 3971–3973

    Article  Google Scholar 

  31. Ito H, Kusunoki T, Saito H, et al. The study on the ordering mechanism in FePt thin films with rapid thermal annealing process. J Magn Magn Mater, 2004, 272–276: 2180–2181

    Article  Google Scholar 

  32. Shima T, Takanashi K, Takanashi Y K, et al. Coercivity exceeding 100 kOe in epitaxially grown FePt sputtered films. Appl Phys Lett, 2004, 85: 2571–2573

    Article  Google Scholar 

  33. Li G Q, Takahoshi H, Ito H, et al. Morphology and domain pattern of L10 ordered FePt films. J Appl Phys, 2003, 94: 5672–5677

    Article  Google Scholar 

  34. Donahue M J, Porter D G. OOMMF User’s Guide Version 1.0, 1999

  35. Li G Q, Takahoshi H, Ito H, et al. Mechanism of magnetization process of island-like L10 FePt films. J Magn Magn Mater, 2005, 287: 219–223

    Article  Google Scholar 

  36. Li G Q, Saito H, Ishio S, et al. Asymmetric initial magnetization process of elongated particles in nucleation-type L10 FePt films. J Magn Magn Mater, 2007, 315: 126–131

    Article  Google Scholar 

  37. Li G Q, Saito H, Ishio S, et al. Morphology and domain pattern of epitaxially grown L10 FePt elongated particles. J Magn Magn Mater, 2007, 319: 73–79

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoQing Li.

About this article

Cite this article

Mo, X., Xiang, H., Li, G. et al. Magnetic properties of perpendicularly orientated L10 FePt nanoparticles. Chin. Sci. Bull. 55, 680–686 (2010). https://doi.org/10.1007/s11434-010-0077-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-0077-7

Keywords

Navigation