Skip to main content
Log in

Dynamic characteristics of an intestine capsule robot with variable diameter

  • Articles
  • Mechanical Engineering
  • Published:
Chinese Science Bulletin

Abstract

This paper proposes an intestine capsule robot with variable diameter. It is driven by external rotating magnetic field and has the function of automatic radial clearance compensation. An external magnetic field generating device and a capsule robot with variable diameter are developed. Radial dynamic balance equation and kinematics equation of the capsule robot traveling inside flexible elasto-wall environment are established, and dynamic characteristics of the capsule robot inside flexible elasto-wall pipe and rigid wall pipe environments are analyzed and compared. Simulations and experiment results show that its dynamic characteristics in both pipes are almost the same. Under the action of radial clearance compensation, fluid dynamic pressure around outer surface of the capsule robot and its propulsion, as well as its adaptability to diameter change range, are significantly improved. Its propulsion and moving speed are controlled by adjusting rotating angular speed of the rotating magnetic field. This innovative capsule robot with radial clearance compensation has a promising prospect for inside intricate gastrointestinal (GI) tract in non-invasive therapy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dario P, Hannaford B, Menciassi A. Smart surgical tools and augmenting devices. IEEE Trans Rob Autom, 2003, 19: 782–791

    Article  Google Scholar 

  2. MacFadyen B V, Cuschieri A. Endoluminal surgery. Surg Endosc, 2005, 19: 1–3

    Article  Google Scholar 

  3. Cuschieri A, Melzer A. The impact of technologies on minimally invasive therapy. Surg Endosc, 1997, 11: 91–92

    Article  Google Scholar 

  4. Cuschieri A. Minimally invasive surgery: Hepatobiliary-pancreatic and foregut. Endosc, 2000, 32: 331–344

    Article  Google Scholar 

  5. Schostek S, Fischer H, Kalanovic D, et al. Microsystems in medicine —Results of an international survey. Minimally Invasive Therapy Allied Technol, 2005: 14, 360–368

    Article  Google Scholar 

  6. Swain P, Iddan G, Meron G, et al. Wireless capsule endoscopy of the small bowel: Development, testing and first human trials. Proc SPIE, 2001, 41: 19–23

    Article  Google Scholar 

  7. Iddan G, Meron G, Glukhovsky A, et al. Wireless capsule endoscopy. Nature, 2000, 405: 417–418

    Article  Google Scholar 

  8. Meron G. The development of the swallable video capsule (M2A). Gastrointest Endosc, 2000, 52: 817–819

    Article  Google Scholar 

  9. RF System Lab, NORIKA3. Available.(English): http://www.rfamerica.com/sayaka/ (Japanese), 2001

  10. Olympus. http://www.olympus-globle.co-m/en/news/2005b/nr051013capsle.cfm, 2008

  11. Jian X Y, Mei T, Wang X H. Driving method of an endoscopic robot capsule by external magnetic field. Robot, 2005, 27: 367–372

    Google Scholar 

  12. Zabulis X, Sfakiotakis M, Tsakiris D P. Effects of vibratory actuation on endoscopic capsule vision. In: 30th Ann Int IEEE EMBS Conf, 2008, 5901–5904

  13. Phee L, Accoto D, Menciassi A, et al. Analysis and development of locomotion devices for the gastrointestinal tract. IEEE Trans Biomed Eng, 2002, 49: 613–616

    Article  Google Scholar 

  14. Phee L, Menciassi A, Gorini S, et al. An innovative locomotion principle for minirobots moving in the gastrointestinal tract. In: Proc IEEE Int Conf Rob Autom, 2002, 1125–1130

  15. Dario P, Ciarletta P, Menciassi A, et al. Modeling and experimental validation of the locomotion of endoscopic robots in the colon. Int J Rob Res, 2004, 23: 549–556

    Article  Google Scholar 

  16. Accoto D, Stefanini C, Phee L, et al. Measurements of the frictional properties of the gastrointestinal tract. In: The World Tri-bol Congr, Vienna, Austria, 2001

  17. Menciassi A, Stefanini C, Gorini S, et al. Legged locomotion in the gastrointestinal tract problem analysis and preliminary technological activity. In: Proc IEEE Int Conf Intell Robots Syst, 2004, 937–942

  18. Kassim I, Phee C L, Wan N G. Locomotion techniques for robotic colonoscopy. IEEE Eng Med Biol Maga, 2006, 25: 49–56

    Article  Google Scholar 

  19. Wang X N, Meng M Q H. An inchworm-like locomotion mechanism based on magnetic actuator for active capsule endoscope. In: Proc IEEE/RSJ Int Conf Intell Robots Syst, 2006, 1267–1272

  20. Guozheng Y, Qiuong L, Guoqing D, et al. The prototype of a piezoelectric medical robot. In: Proc IEEE Int Symp Microch Human Sci, 2002, 73–77

  21. Kim B, Lee S, Park J H, et al. Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs).IEEE/ASME Trans Mechatron, 2005, 10: 77–86

    Article  Google Scholar 

  22. Menciassi A, Stefanini C, Gorini S, et al. Locomotion of a legged capsule in the gastrointestinal tract: Theoretical study and preliminary technological result. In: Proc IEEE Int Conf Eng Med Biol, 2004, 26: 2767–2770

    Google Scholar 

  23. Dario P, Menciassi A, Stefanini C, et al. Teleoperated endoscopic capsule equipped with active locomotion system. Patent WO 2005082248, 2005

  24. Quirini M, Menciassi A, Scapellato S, et al. Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract. IEEE/ASME Tracs Mechatron, 2008, 13: 169–179

    Article  Google Scholar 

  25. Ikeuchi K, Yoshinaka K, Hashimoto S, et al. Locomotion of medical micro robot with spiral ribs using mucus. In: Proc IEEE Int Symp Micro Mach Human Sci, 1996, 217–222

  26. Zhang Y, li Z G, Jing S P, et al. Characteristics of magnetic tensile force along axial direction of a capsule micro robot applied in intestine. Chin Mech Eng, 2006, 18: 1709–1719

    Google Scholar 

  27. Zhang Y, Wang D, Guo D, et al. Characteristics of magnetic torque of a capsule micro robot applied in intestine IEEE. Trans Magn (Accepted)

  28. Lu C H, An X, Li J F. Analysis and research on spiral oil wedge hydrodynamic bearing for precise machine tool spindles. Int J Machine Tools Manuf, 1998, 38: 197–203

    Article  Google Scholar 

  29. Zhang Y, Zhang K, Zhang L. Spiral drive characteristics of a micro robot inside human body. Robot, 2006, 28: 560–570

    Google Scholar 

  30. Pinkus O, Sternlicht B. Theory of Hydrodynamic Lubrication. New York: McGraw Hill Co., 1961

    Google Scholar 

  31. Gent A N. Engineering with Rubber-How to Design Rubber Components. New York: Hanser Gardner Publications, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongShun Zhang.

About this article

Cite this article

Zhang, Y., Jiang, S., Zhang, X. et al. Dynamic characteristics of an intestine capsule robot with variable diameter. Chin. Sci. Bull. 55, 1813–1821 (2010). https://doi.org/10.1007/s11434-009-3370-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-3370-6

Keywords

Navigation