Skip to main content
Log in

Duplication and functional diversification of pancreatic ribonuclease (RNASE1) gene

  • Review
  • Molecular Genetics
  • Published:
Chinese Science Bulletin

Abstract

Adaptation is one of the most fundamental issues in the studies of organismal evolution. Pancreatic ribonuclease is a very important digestive enzyme and secreted by the pancreas. Numerous studies have suggested that RNASE1 gene duplication is closely related to the functional adaptation of the digestive system in the intestinal fermentation herbivores. RNASE1 gene thus becomes one of the most important candidate genetic markers to study the molecular mechanism of adaptation of organisms to the feeding habit. Interestingly, RNASE1 gene duplication has also been found in some non-intestinal fermentation mammals, suggesting that RNASE1 gene may have produced novel tissue specificity or functions in these species. In this review, RNASE1 gene and its implications in adaptive evolution, especially in association with the feeding habit of organisms, are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nei M, Gu X, Sitnikova T. Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci USA, 1997, 94: 7799–7806

    Article  Google Scholar 

  2. Nei M, Rogozin L B, Piontkivska H. Purifying selection and birth-and-death evolution in the ubiquitin gene family. Proc Natl Acad Sci USA, 2000, 97: 10866–10871

    Article  Google Scholar 

  3. Zhang J, Rosenberg H F, Nei M. Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci USA, 1998, 95: 3708–3713

    Article  Google Scholar 

  4. Shi P, Zhang J, Yang H, et al. Adaptive diversification of bitter taste receptor genes in mammalian evolution. Mol Biol Evol, 2003, 20: 805–814

    Article  Google Scholar 

  5. Li X, Yang S, Peng L X, et al. Origin and evolution of new genes. Chinese Sci Bull, 2004, 49: 1120–1125

    Google Scholar 

  6. Robbins L S, Nadeau J H, Johnson K R, et al. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell, 1993, 72: 827–834

    Article  Google Scholar 

  7. Takeuchi S H, Suzuki S, Hirose Y, et al. Molecular cloning and sequence analysis of the chick melanocortin 1-receptor gene. Biochim Biophys Acta, 1996, 1306: 122–126

    Google Scholar 

  8. Rosenblum E B, Hoekstra H E, Nachman M W. Adaptive reptile color variation and the evolution of the Mc1r gene. Evolution, 2004, 58: 1794–1808

    Google Scholar 

  9. Gojobori J, Innan H. Potential of fish opsin gene duplications to evolve new adaptive functions. Trends Genet, 2009, 25: 198–202

    Article  Google Scholar 

  10. Okoyama S, Yokoyama R. Adaptive evolution of photoreceptors and visual pigments in vertebrates. Annu Rev Ecol Syst, 1996, 27: 543–567

    Article  Google Scholar 

  11. Shi P, Zhang J Z, Yang H, et al. Adaptive Diversification of bitter taste receptor genes in mammalian evolution. Mol Biol Evol, 2003, 20: 805–814

    Article  Google Scholar 

  12. Shi P, Zhang J. Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Mol Biol Evol, 2006, 23: 292–300

    Article  Google Scholar 

  13. Shi P, Zhang J. Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land. Genome Res, 2007, 17: 166–174

    Article  Google Scholar 

  14. Wu H H, Su B. Adaptive evolution of SCML1 in primates, a gene involved in male reproduction. BMC Evol Biol, 2008, 8: 192

    Article  Google Scholar 

  15. Ota T, Nei M. Divergent evolution and evolution by the birth-and-death process in the immunoglobulin VH gene family. Mol Biol Evol, 1994, 11: 469–482

    Google Scholar 

  16. Makova K D, Li W H. Divergence in the spatial pattern of gene expression between human duplicate genes. Genome Res, 2003, 13: 1638–1645

    Article  Google Scholar 

  17. Barnard E A. Biological function of pancreatic ribonuclease. Nature, 1969, 221: 340–344

    Article  Google Scholar 

  18. Beintema J J, Gaastra W, Lenstra J A, et al. The molecular evolution of pancreatic ribonuclease. J Mol Evol, 1977, 10: 49–71

    Article  Google Scholar 

  19. Beintema J J, Fitch W M, Carsana A. Molecular evolution of pancreatic-type ribonucleases. Mol Biol Evol, 1986, 3: 262–275

    Google Scholar 

  20. Beintema J J. The primary structure of langur (Presbytis entellus) pancreatic ribonuclease: adaptive features in digestive enzymes in mammals. Mol Biol Evol, 1990, 7: 470–477

    Google Scholar 

  21. D’Alessio G, Floridi A, De Prisco R, et al. Bull semen ribonucleases 1 purification and physico-chemical properties of the major component. Eur J Biochem, 1972, 26: 153–161

    Article  Google Scholar 

  22. Suzuki H, Parente A, Farina B, et al. Complete amino-acid sequence of bovine seminal ribonuclease, a dimeric protein from seminal plasma. Biol Chem Hoppe-Seyler, 1987, 368: 1305–1312

    Google Scholar 

  23. Beintema J J, Neuteboom B. Origin of the duplicated ribonuclease gene in guinea-pig: Comparison of the amino acid sequences with those of two close relatives: capybara and cuis ribonuclease. J Mol Evol, 1983, 19: 145–152

    Article  Google Scholar 

  24. Kleineidam R G, Pesole G, Breukelman H J, et al. Inclusion of cetaceans within the order Artiodactyla based on phylogenetic analysis of pancreatic ribonuclease genes. J Mol Evol, 1999, 48: 360–368

    Article  Google Scholar 

  25. Breukelman H J, Jekel P A, Dubois J Y, et al. Secretory ribonucleases in the primitive ruminant chevrotain (Tragulus javanicus). Eur J Biochem, 2001, 268: 3890–3897

    Article  Google Scholar 

  26. Dubois J Y, Jekel P A, Mulder P P, et al. Pancreatic-type ribonuclease 1 gene duplications in rat species. J Mol Evol, 2002, 55: 522–533

    Article  Google Scholar 

  27. Dubois J Y, Ursing B M, Kolkman J A, et al. Molecular evolution of mammalian ribonucleases 1. Mol Phyl Evol, 2003, 27: 453–463

    Article  Google Scholar 

  28. Zhang J, Zhang Y P, Rosenberg H F. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nat Genet, 2002, 30: 411–415

    Article  Google Scholar 

  29. Zhang J. Parallel adaptive origins of digestive RNases in Asian and African leaf monkeys. Nat Genet, 2006, 38: 819–823

    Article  Google Scholar 

  30. Schienman J E, Holt R A, Auerbach M R, et al. Duplication and divergence of 2 distinct pancreatic ribonuclease genes in leaf-eating African and Asian colobine monkeys. Mol Biol Evol, 2006, 23: 1465–1479

    Article  Google Scholar 

  31. Yu L, Zhang Y P. The unusual adaptive expansion of pancreatic ribonuclease gene in carnivora. Mol Biol Evol, 2006, 23: 2326–2335

    Article  Google Scholar 

  32. D’Alession G, Riordan J F. RNASEs Structures and Functions. New York: Academic Press, 1996

    Google Scholar 

  33. Beintema J J, Breukelman H J, Carsana A, et al. Evolution of vertebrate ribonucleases: ribonuclease A superfamily. In: D’Alessio G, Riordan J F, eds. Ribonucleases Structures and Functions. San Diego: Academic Press, 1997. 245–269

    Google Scholar 

  34. Beintema J J, Kleineidam R G. The ribonuclease A superfamily: General discussion. Cell Mol Life Sci, 1998, 54: 825–832

    Article  Google Scholar 

  35. Cho S, Beintema J J, Zhang J. The ribonuclease A superfamily of mammals and birds: Identifying new members and tracing evolutionary histories. Genomics, 2005, 85: 208–220

    Article  Google Scholar 

  36. Golding G B, Dean A M. The structural basis of molecular adaptation. Mol Biol Evol, 1998, 15: 355–396

    Google Scholar 

  37. Blackburn P, Moore S. Pancreatic ribonuclease. In: Boyer P D, ed. The Enzymes. Vol 15. New York: Academic Press, 1982

    Google Scholar 

  38. Beintema J J, Schuller C, Irie M, et al. Molecular evolution of the ribonuclease superfamily. Prog Biophys Mol Biol, 1988, 51: 165–192

    Article  Google Scholar 

  39. Sasso M P, Carsana A, Confalone E, et al. Molecular cloning of the gene encoding the bovine brain ribonuclease and its expression in different regions of the brain. Nucleic Acids Res, 1991, 19: 6469–6474

    Article  Google Scholar 

  40. Watanabe H, Katoh H, Ishii M, et al. Primary structure of a ribonuclease from bovine brain. J Biochem, 1988, 104: 939–945

    Google Scholar 

  41. Sasso M P, Lombardi M, Confalone E, et al. The differential pattern of tissue-specific expression of ruminant pancreatic type ribonucleases may help to understand the evolutionary history of their genes. Gene, 1999, 227: 205–212

    Article  Google Scholar 

  42. Zhao W, Confalone E, Breukelman H J, et al. Ruminant brain ribonucleases. Expression and evolution. Biochim Biophys Acta, 2001, 1547: 95–103

    Google Scholar 

  43. Beintema J J, Scheffer A J, Van Dijk H, et al. Pancreatic ribonuclease distribution and comparisons in mammals. Nat New Biol, 1973, 241: 76–78

    Google Scholar 

  44. Futami J, Tsushima Y, Murato Y, et al. Tissue-specific expression of pancreatictype RNases and RNase inhibitor. DNA Cell Biol, 1997, 16: 413–419

    Article  Google Scholar 

  45. Libonati M, Floridi A. Breakdown of double-stranded RNA by bull semen ribonuclease. Eur J Biochem, 1969, 8: 81–87

    Article  Google Scholar 

  46. Sorrentino S, Libonati M. Structure-function relationships in human ribonucleases: Main distinctive features of the major RNASE types. FEBS Lett, 1997, 404: 1–5

    Article  Google Scholar 

  47. Libonati M, Sorrentino S. Degradation of double-stranded RNA by mammalian pancreatic-type ribonucleases. Methods Enzymol, 2001, 341: 234–248

    Article  Google Scholar 

  48. Weickmann J L, Glitz D G. Human ribonucleases: Quantitation of pancreatic like enzymes in serum, urine and organ preparations. J Biol Chem, 1982, 257: 8705–8710

    Google Scholar 

  49. Beintema J J, Blank A, Schieven G L, et al. Differences in glycosylation pattern of human secretory ribonucleases. Biochem J, 1988, 255: 501–505

    Google Scholar 

  50. Ohno S. Evolution by Gene Duplication. Heidelberg: Springer-Verlag, 1970

    Google Scholar 

  51. Clegg M T, Cummings M P, Durbin M L. The evolution of plant nuclear genes. Proc Natl Acad Sci USA, 1997, 94: 7791–7798

    Article  Google Scholar 

  52. Force A, Lynch M, Pickett F, et al. Preservation of duplicate genes by complementary degenerative mutations. Genetics, 1999, 151: 1531–1545

    Google Scholar 

  53. Zhang J. Evolution by gene duplication: an update. Trends Ecol Evol, 2003, 18: 292–298

    Article  Google Scholar 

  54. Sorrentino S, Naddeo M, Russo A, et al. Degradation of double-stranded RNA by human pancreatic ribonuclease: crucial role of noncatalytic basic amino acid residues. Biochemistry, 2003, 42: 10182–10190

    Article  Google Scholar 

  55. Zhang J. Parallel functional changes in the digestive RNases of ruminants and colobines by divergent amino acid substitutions. Mol Biol Evol, 2003, 20: 1310–1317

    Article  Google Scholar 

  56. Kay R N B, Davies A G. Digestive physiology. In: Davies A G, Olates J F, eds. Colobine Monkeys: Their Ecology, Behaviour and Evolution. Cambridge: Cambridge University Press, 1994

    Google Scholar 

  57. Delson E. Evolutionary history of the colobine monkeys in paleoenvironmental perspective. In: Davies A G, Oates J F, eds. Colobine Monkeys: Their Ecology, Behaviour, and Evolution. Cambridge: Cambridge University Press, 1994

    Google Scholar 

  58. Stewart C B, Wilson A C. Sequence convergence and functional adaptation of stomach lysozymes from foregut fermenters. Cold Spring Harb Symp Quant Biol, 1987, 52: 891–899

    Google Scholar 

  59. Schaller G B, Teng Q T, Johnson K G, et al. The feeding ecology of giant pandas and Asiatic black bears in the Tanjiahe Reserve, China. In: Gittleman J L, ed. Carnivore Behavior, Ecology and Evolution. New York: Cornell University Press, 1989. 212–241

    Google Scholar 

  60. Neil A S, Kimberly D, Zhang J Z, et al. Rapid evolution of the ribonuclease a superfamily: adaptive expansion of independent gene clusters in rats and mice. J Mol Evol, 1999, 49: 721–728

    Article  Google Scholar 

  61. Dubois J Y, Catzeflis F M, Beintema J J. The phylogenetic position of “Acomyinae” (Rodentia, Mammalia) as sistergroup of a murinae1 gerbillinae clade: evidence from the nuclear ribonuclease gene. Mol Phyl Evol, 1999, 13: 181–192

    Article  Google Scholar 

  62. Beintema J J, Lenstra J A. Evolution of mammalian pancreatic ribonucleases. In: Goodman M, ed. Macromolecular Sequences in Systematic and Evolutionary Biology. New York: Plenum, 1982. 43–73

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Yu or YaPing Zhang.

Additional information

This work was supported by the State Key Basic Research and Development Program of China (Grant No. 2007CB411600) and National Natural Science Foundation of China (Grant No. U0836603).

About this article

Cite this article

Wang, X., Li, N., Yu, L. et al. Duplication and functional diversification of pancreatic ribonuclease (RNASE1) gene. Chin. Sci. Bull. 55, 2–6 (2010). https://doi.org/10.1007/s11434-009-0717-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0717-y

Keywords

Navigation