Skip to main content
Log in

Space experimental studies of microgravity fluid science in China

  • Review / Hydromechanics
  • Published:
Chinese Science Bulletin

Abstract

Microgravity fluid physics is an important part of microgravity sciences, which consists of simple fluids of many new systems, gas-liquid two-phase flow and heat transfer, and complex fluid mechanics. In addition to the importance of itself in sciences and applications, microgravity fluid physics closely relates to microgravity combustion, space biotechnology and space materials science, and promotes the developments of interdisciplinary fields. Many space microgravity experiments have been performed on board the recoverable satellites and space ships of China and pushed the rapid development of microgravity sciences in China. In the present paper, space experimental studies and the main results of the microgravity fluid science in China in the last 10 years or so are introduced briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang H D, Chu G M, Zhan X Q. Liquid management under microgravity environment. In: Hu W R, ed. Space Science in China. New York: Grodon & Breach Science Publishers, 1997. 355–374

    Google Scholar 

  2. Lin L Y. Microgravity Science and Space Experiments in China (in Chinese). Beijing: Chinese Publisher of Science and Technology, 1988

    Google Scholar 

  3. Zhong X R, Lin L Y. GaAs single crystal growth in space. In: Hu W R, ed. Space Science in China. New York: Gordon & Breach Science Publisher, 1997. 333–354

    Google Scholar 

  4. Chen W C. Space materical science. In: Hu W R, ed. Space Science in China. New York: Gordon & Breach Science Publisher, 1997. 315–332

    Google Scholar 

  5. Liu C X. Simulations and experiments of space biology. In: Hu W R, ed. Space Science in China. New York: Gordon & Breach Science Publisher, 1997. 387–396

    Google Scholar 

  6. Bi R C. Protein crystal growth in space. In: Hu W R, ed. Space Science in China. New York: Gordon & Breach Science Publisher, 1997. 397–414

    Google Scholar 

  7. Feng M F. Cell cultivation in space. In: Hu W R, ed. Space Science in China. New York: Gordon & Breach Science Publisher, 1997. 415–436

    Google Scholar 

  8. Hu W R, Xu S C. Microgravity Fluid Mechanics (in Chinese). Beijing: Science Press, 1999

    Google Scholar 

  9. Yao Y L, Xie J C, Shu J Z, et al. Microgravity experiment in oscillatory convection in liquid bridge of floating half zone. Acta Mech Sin, 1995, 27: 663

    Google Scholar 

  10. Xie J C, Lin H, Han J H, et al. Experimental investigation of thermocapillary migration of isolated drop. Adv Space Res, 1999, 24: 1409

    Article  Google Scholar 

  11. Hu W R. Preface of special issue: Microgravity experiments on board the Chinese recoverable satellite. Microgravity Sci Tech, 2008, 20: 59

    Article  Google Scholar 

  12. Birikh R V, Briskman V A, Velarde M G, et al. Liquid Interfacial Systems. New York & Basel: Marcel Dekker, Inc., 2003

    Google Scholar 

  13. Schwabe D, Lamprecht R, Scharmann A. Marangoni experiment in an open boat. In: Proceedings of the Norderney Symposium on Scientific Results of the Germany Space-lab Mission D1, Norderney, Germany, 1986. 121

  14. Georis Ph, Hennenberg M, Lebon G, et al. Investigation of thermocapillary convection in a three-liquid-layer system. J Fluid Mech, 1999, 389: 209–228

    Article  Google Scholar 

  15. Simanovskii I B, Georis Ph, Nepomniaschy A, et al. Oscillatory instability in multilayer system. Phys Fluids, 2003, 15: 3867

    Article  Google Scholar 

  16. Liu Q S, Roux B, Velarde M G.. Thermocapillary convection in two-layer system. Int J Heat Mass Transfer, 1998, 41: 1499

    Article  Google Scholar 

  17. Yao Y L, Liu Q S, Zhang P, et al. Space experiments on thermocapillary convection and Marangoni convection of two-immixible liquid layers. J Japan Soc Microgravity Appl, 1998, Suppl II: 150

    Google Scholar 

  18. Geng R H, Zhang P. The melting process in space experiment of fluid physics on board satellite SJ-5. Microgravity Space Station Utilization, 2000, 3: 5

    Google Scholar 

  19. Zhou B H, Liu Q S, Hu L, et al. Space experiments of thermocapillary convection in two-layers. Sci China Ser E, 2002, 45: 552

    Google Scholar 

  20. Zhao J F, Xie J C, Lin H, et al. Microgravity experiments of two-phase flow patterns aboard Mir space station. Acta Mech Sin, 2001, 17: 151

    Article  Google Scholar 

  21. Zhao J F, Xie J C, Lin H, et al. Experimental studies on two-phase flow patterns aboard the Mir space station. Int J Multiphase Flow, 2001, 27: 1931

    Article  Google Scholar 

  22. Zhao J F, Hu W R. Slug to annular flow transition of microgravity two-phase flow. Int J Multiphase Flow, 2000, 26: 1295–1304

    Article  Google Scholar 

  23. Zhao J F, Xie J C, Lin H, et al. Gas-liquid two-phase flow patterns in partial gravity conditions (in Chinese). J Eng Thermophys, 2004, 25: 85–87

    Google Scholar 

  24. Zhao J F, Xie J C, Lin H, et al. Experimental study on two-phase gas-liquid flow patterns at normal and reduced gravity conditions. Sci China Ser E, 2004, 34: 553–560

    Google Scholar 

  25. Zhao J F, Xie J C, Lin H et al. Pressure drop of bubbly two-phase flow through a square channel at reduced gravity. Adv Space Res, 2002, 29: 681–686

    Article  Google Scholar 

  26. Zhao J F, Lin H, Xie J C, et al. Experimental study on pressure drop in two-phase gas-liquid flow at reduced gravity condition (in Chinese). J Basic Sci Eng, 2001, 9: 373–380

    Google Scholar 

  27. Youg N O, Goldstein J S, Block M J. The motion of bubbles in a vertical temperature gradient. J Fluid Mech, 1959, 6: 350

    Article  Google Scholar 

  28. Yin Z H, Gao P, Hu W R, et al. Thermocapillary migration of nondeformable drops. Phys Fluids, 2008, 20: 082101

    Article  Google Scholar 

  29. Ma X J, Balasubramaniam R, Subramanian R S. Numerical simulation of thermocapillary drop motion with internal circulation. Numer Heat Transfer A, 1999, 35: 291

    Article  Google Scholar 

  30. Xie J C, Lin H, Han J H, et al. Drop migration of middle Reynolds number in a vertical temperature gradient. Microgravity Sci Tech, 1996, 9: 95

    Google Scholar 

  31. Xie J C, Lin H, Han J H, et al. Experimental investigation on Marangoni drop migration using drop shaft facility. Int J Heat Mass Transfer, 1998, 41: 2077

    Article  Google Scholar 

  32. Xie J C, Lin H, Zhang P, et al. Experimental investigation on thermocapillary drop migration at large Marangoni number in reduced microgravity. J Coll Interf, 2005, 285: 737

    Article  Google Scholar 

  33. Balasubramaniam R, Lacy C E, Wozniak G, et al. Thermocapillary migration of bubbles and drops at moderate values of the Marangoni number in reduced gravity. Phys Fluids, 1996, 8: 872–880

    Article  Google Scholar 

  34. Hadland P H, Balasubramaniam R, Wozniak G, et al. Thermocapillary migration of bubbles and drops at moderate to large Marangoni number and moderate Reynolds number in reduced gravity. Exp Fluids, 1999, 26: 240–248

    Article  Google Scholar 

  35. Cui H L, Hu L, Duan L, et al. Space experimental investigation on thermocapillary migration of bubbles. Sci China Ser G, 2008, 51: 894–904

    Article  Google Scholar 

  36. Kang Q, Cui H L, Hu L, et al. On-board experimental study of bubble thermocapillary migration in a recoverable satellite. Microgravity Sci Tech, 2008, 20: 67–71

    Article  Google Scholar 

  37. Sun R, Hu W R. The thermocapillary migration of two bubbles in microgravity environment. J Coll Interf Sci, 2002, 255: 375–381

    Article  Google Scholar 

  38. Sun R, Hu W R. Planar thermocapillary migration of two bubbles in microgravity environment. Phys Fluids A, 2003, 15: 3015–3027

    Article  Google Scholar 

  39. Kang Q, Cui H L, Hu L, et al. Experimental Investigation on bubble coalescence under non-uniform temperature distribution in reduced gravity. J coll Interf Sci, 2005, 310: 546–549

    Article  Google Scholar 

  40. Kang Q, Hu L, Huang C, et al. Experimental investigations on interaction of two drops by thermocapillary-buoyancy migration. Int J Heat Mass Transfer, 2006, 49: 2636–2641

    Article  Google Scholar 

  41. Zhao J F, Wan S X, Liu G, et al. Subcooling pool boiling on thin wire in microgravity. Acta Astronautica, 2009, 64: 188–194

    Article  Google Scholar 

  42. Zhao J F, Wan S X, Liu G, et al. Pool boiling heat transfer in microgravity. Microgravity Sci Tech, 2007, 19: 135–136

    Article  Google Scholar 

  43. Zhao J F, Liu G, Wan S X, et al. Bubble dynamics in nucleate pool boiling on thin wires in microgravity. Microgravity Sci Tech, 2008, 20: 81–89

    Article  Google Scholar 

  44. Zhao J F, Li J, Yan N, et al. Bubble behavior and heat transfer in quasi-steady pool boiling in microgravity. Microgravity Sci Tech, 2009, 21(S1): 175–183

    Article  Google Scholar 

  45. Li J, Zhao J F, Yan N, et al. Bubble behaviour in microgravity pool boiling (in Chinese). J Eng Thermophys, 2008, 29: 439–442

    Google Scholar 

  46. Bowen W R, Liang Y, Williams P M. Gradient diffusion coefficients-theory and experiment. Chem Eng Soc, 2000, 55: 2359–2377

    Article  Google Scholar 

  47. Laurence R, Jacques B. Influence of conformational changes on diffusion properties of bovine serum albumin: a holographic interferometry study. Coll Surf B: Biointerfaces, 2002, 25: 99–108

    Article  Google Scholar 

  48. He C H. Prediction of the concentration dependency of mutual diffusion coefficients in binary liquid mixtures. Ind Eng Chem Res, 1998, 34: 2148–2153

    Article  Google Scholar 

  49. Yeng E, Lee Sam, Li F Y. Binary diffusion coefficients of the methanol/water system in the temperature range 30–40°C. J Chem Eng Data, 1991, 36: 240–243

    Article  Google Scholar 

  50. Rashidnia N, Balasubramaniam R. Measurement of the mass diffusivity of miscible liquids as a function of concentration using a common path shearing interferometer. Exp Fluids, 2004, 36: 619–626

    Article  Google Scholar 

  51. Duan L, Shu J Z. The convection during NaClO3 crystal growth observed by the phase shift interferometer. J Crystal Growth, 2001, 223: 181–188

    Article  Google Scholar 

  52. Kang Q, Duan L, Hu W R. Mass transfer process during the NaClO3 crystal growth process. Int J Heat Mass Transfer, 2001, 44: 3213–3222

    Article  Google Scholar 

  53. Duan L, Kang Q, Hu W R, et al. Mass transfer process and growth rate of protein crystal growth. Biophys Chem, 2002, 97: 189–201

    Article  Google Scholar 

  54. Hou M, Tu H, Liu R, et al. Temperature oscillations in a compartmentalized Bi-disperse granular gas. Phys Rev Lett, 2008, 100: 068001

    Article  Google Scholar 

  55. Hou M, Evesque P. Granular medium in microgravity. In: Hu W R, ed. Advances in Microgravity Sciences. Kerala, India: Research Signpost Publisher, 2008

    Google Scholar 

  56. Hou M, Liu R, Zhai G, et al. Velocity distribution of vibration-driven granular gas in Knudsen regime in microgravity. Microgravity Sci Tech, 2008, 20: 73

    Article  Google Scholar 

  57. Hou M, Liu R, Meerson B. Gas-liquid like phase transition in granular gases under zero gravity. Chin J Space Sci, 2008, 28: 1

    Google Scholar 

  58. Hou M, Li Y. Probability density function of granular-gas velocity distribution (in Chinese). Chinese Sci Bull (Chinese Ver), 2009, 54: 1483–1487

    Google Scholar 

  59. Liu R, Li Y, Hou M, et al. van der Waals-like phase separation instability of a driven granular gas in three dimensions. Phys Rev E, 2007, 75: 079705

    Google Scholar 

  60. Zhang X Q. A review on fundamental study of combustion at microgravity conditions (in Chinese). Adv Mech, 1990, 20: 83–92

    Google Scholar 

  61. Zhang X. Research advances on microgravity combustion (in Chinese). Adv Mech, 2004, 34: 507–528

    Google Scholar 

  62. Wang S F, Zhang X. Microgravity smoldering combustion of flexible polyurethane foam with central ignition. Microgravity Sci Tech, 2008, 20: 99–105

    Article  Google Scholar 

  63. Kong W, Wang B, Zhang W, et al. Study on prefire phenomena of wire insulation at microgravity. Microgravity Sci Tech, 2008, 20: 107–113

    Article  Google Scholar 

  64. Ohlemiller T J. Modeling of smoldering combustion propagation. Prog Energy Combust Sci, 1986, 11: 277–310

    Article  Google Scholar 

  65. Drysdale D. An Introduction to Fire Dynamics. Chichester, England: John Wiley, 1999

    Google Scholar 

  66. Walther D C, Fernandez-Pello A C, Urban D L. Space shuttle based microgravity smoldering combustion experiments. Combust Flame, 1999, 116: 398–414

    Article  Google Scholar 

  67. Bar-Ilan A, Anthenien R A, Walther D C, et al. Microgravity smoldering combustion experiments in the space shuttle. AIAA Paper, 2002, 2002–1077

  68. Bar-Ilan A, Rein G, Fernandez-Pello A C, et al. Forced forward smoldering experiments in microgravity. Exp Thermal Fluid Sci, 2004, 28: 743–751

    Article  Google Scholar 

  69. Greenberg P S, Sacksteder K R, Kashiwagi T. Wire insulation flammability experiment: USML-1 1 Year Post Mission Summary. NASA CP 3272, 1994

  70. Greenberg P S, Sacksteder K R, Kashiwagi T. Wire insulation flammability. NASA CP 10174, 1995

  71. Kikuchi M, Fujita O, Ito K, et al. Experimental study on flame spread over wire insulation in microgravity. Proc Combust Inst, 1998, 27: 2507–2514

    Google Scholar 

  72. Kikuchi M, Fujita O, Ito K, et al. Flame spread over polymeric wire insulation in microgravity. Space Forum, 2000, 6: 245–251

    Google Scholar 

  73. Sun S J, Gao Y X, Shu N J, et al. A novel counter sheet-flow sandwich cell culture system to unravel cellular responses in space. Microgravity Sci Tech, 2008, 20: 115–120

    Article  Google Scholar 

  74. Long M, Sun S J, Huo B, et al. Biomechanics on cell responses to microgravity. In: Hu W R, ed. Advances in Microgravity Sciences. Trivandrum, India: Transworld Research Network Press, 2009, in press

    Google Scholar 

  75. Freed L E, Vunjak-Novakovic G. Spaceflight bioreactor studies of cells and tissues. Adv Space Biol Med, 2002, 8: 177–195

    Article  Google Scholar 

  76. Mardikar S H, Niranjan K. Observations on the shear damage to different animal cells in a concentric cylinder viscometer. Biotech Bioeng, 2000, 68: 697–704

    Article  Google Scholar 

  77. Wang J H, Thampatty B P. An introductory review of cell mechanobiology. Biomech Model Mechan, 2006, 5: 1–16

    Article  Google Scholar 

  78. Begley C M, Kleis S J. The fluid dynamic and shear environment in the NASA/JSC rotating-wall perfused-vessel bioreactor. Biotech Bioeng, 2000, 70: 32–40

    Article  Google Scholar 

  79. Piiper J, Baumgarten-Schumann D. Transport of O2 and CO2 by water and blood in gas exchange of the dogfish (Scyliorhinus stellaris). Resp Physiol, 1968, 5: 326–337

    Article  Google Scholar 

  80. Hughes G M. Distribution of oxygen tension in the blood and water along the secondary lamella of the icefish gill. J Exp Biol, 1972, 56: 481–492

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenRui Hu.

Additional information

Supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KJCX2-L08), and National Natural Science Foundation of China (Grant Nos. 10872202, 10672171 and 30730032)

About this article

Cite this article

Hu, W., Long, M., Kang, Q. et al. Space experimental studies of microgravity fluid science in China. Chin. Sci. Bull. 54, 4035–4048 (2009). https://doi.org/10.1007/s11434-009-0680-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0680-7

Keywords

Navigation