Skip to main content
Log in

A new 3-D Gd-Cu heterometallic polymer [Gd2Cu3(bpy)2-(ip)6]·6H2O with a non-interpenetrated α-Po net

  • Articles / Inorganic Chemistry
  • Published:
Chinese Science Bulletin

Abstract

A new 3-D porous Gd-Cu heterometallic polymer [Gd2Cu3(bpy)2(ip)6]·6H2O (1) (bpy = 2,2′-bipyridine, H2ip = isophthalic acid) has been hydrothermally synthesized and structurally characterized. Compound 1 crystallizes in the triclinic space group P \( \bar 1 \) and displays a 3-D non-interpenetrated α-Po network with 1-D channels filled transversely by the hexa-nuclear chain-like (H2O)6. The EPR and thermal stability of 1 were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xia J, Zhao B, Wang H S, et al. Two- and three-dimensional lanthanide complexes: Synthesis, crystal structures, and properties. Inorg Chem, 2007, 46: 3450–3458

    Article  Google Scholar 

  2. Cheng J W, Zheng S T, Yang G Y. Diversity of crystal structure with different lanthanide ions involving in situ oxidation-hydrolysis reaction. Dalton Trans, 2007, 36: 4059–4066

    Article  Google Scholar 

  3. Zhu W H, Wang Z M, Gao S. Two 3D porous lanthanide-fumarate-oxalate frameworks exhibiting framework dynamics and luminescent change upon reversible de- and rehydration. Inorg Chem, 2007, 46: 1337–1342

    Article  Google Scholar 

  4. Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers. Angew Chem Int Ed, 2004, 43: 2334–2375

    Article  Google Scholar 

  5. Liu G X, Zhu K, Chen H, et al. Two zinc(II) supramolecular isomers of square grid networks formed by two flexible ligands: Syntheses, structures and nonlinear optical properties. CrystEngComm, 2008, 10: 1527–1530

    Article  Google Scholar 

  6. Ren P, Shi W, Cheng P. Synthesis and characterization of three-dimensional 3d–3d and 3d–4f heterometallic coordination polymers with high thermal stability. Cryst Growth Des, 2008, 8: 1097–1099

    Article  Google Scholar 

  7. Gao H L, Yi L, Ding B, et al. First 3D Pr(III)-Ni(II)-Na(I) polymer and a 3D Pr(III) open network based on pyridine-2,4,6-tricarboxylic acid. Inorg Chem, 2006, 45: 481–483

    Article  Google Scholar 

  8. Gu X J, Xue D F. 3D coordination framework [Ln43-OH)2Cu6I5-. (IN)8 (OAc)3] (IN=isonicotinate): Employing 2D layers of lanthanide wheel clusters and 1D chains of copper halide clusters. Inorg Chem, 2007, 46: 5349–5353

    Article  Google Scholar 

  9. Murugesu M, Clérac R, Anson C E, et al. Structure and magnetic properties of a giant Cu44 II aggregate which packs with a zeotypic superstructure. Inorg Chem, 2004, 43: 7269–7271

    Article  Google Scholar 

  10. Zheng N F, Bu X H, Lu H W, et al. Crystalline superlattices from single-sized quantum dots. J Am Chem Soc, 2005, 127: 11963–11965

    Article  Google Scholar 

  11. Zhao B, Cheng P, Dai Y, et al. A nanotubular 3D coordination polymer based on a 3d–4f heterometallic assembly. Angew Chem Int Ed, 2003, 42: 934–936

    Article  Google Scholar 

  12. Cheng J W, Zhang J, Yang G Y. Lanthanide-transition-metal sandwich framework comprising {Cu3} cluster pillars and layered networks of {Er36} wheels. Angew Chem Int Ed, 2006, 45: 73–77

    Article  Google Scholar 

  13. Cheng J W, Zheng S T, Yang G Y. Linking two distinct layered networks of nanosized {Ln18} and {Cu24} wheels through isonicotinate ligands. Chem-Eur J, 2008, 14: 88–97

    Article  Google Scholar 

  14. Zhang M B, Zhang J, Yang G Y. A 3D coordination framework based on linkages of nanosized hydroxo lanthanide clusters and copper centers by isonicotinate ligands. Angew Chem Int Ed, 2005, 44: 1385–1388

    Article  Google Scholar 

  15. Cheng J W, Zheng S T, Yang G Y. {LnIII5-K2,K1,K1,K1,K1-1,2-(CO2)2C6H4][isonicotine][H2O]}2CuI·X(Ln= Eu, Sm, Nd; X =ClO4 , Cl): A new pillared-layer approach to heterobimetallic 3d–4f 3D-network solids. Inorg Chem, 2007, 46: 10534–10538

    Article  Google Scholar 

  16. Cheng J W, Zheng S T, Yang G Y. Incorporating distinct metal clusters to construct diversity of 3D pillared-layer lanthanide-transition-metal frameworks. Inorg Chem, 2008, 47: 4930–4935

    Article  Google Scholar 

  17. Sheldrick G M. SHELXS97. Program for Crystal Structure Solution. Göttingen, Germany: University of Göttingen, 1997

    Google Scholar 

  18. Sheldrick G M. SHELXL97. Program for Crystal Structure Refinement. Göttingen, Germany: University of Göttingen, 1997

    Google Scholar 

  19. He F, Tong M L, Chen X M, et al. Synthesis, structures, and magnetic properties of heteronuclear Cu(II)-Ln(III) (Ln = La, Gd, or Tb) complexes. Inorg Chem, 2005, 44: 8285–8292

    Article  Google Scholar 

  20. Niu S Y, Jin J, Jin X X, et al. Synthesis, structure and characterization of Gd(III) dimer bridged by tetra benzoates. Solid State Sci, 2002, 4: 1103–1106

    Article  Google Scholar 

  21. Zhang M L, Li D S, Fu F, et al. A novel 4·82 CdII network constructed from helical motif: Incorporating alternate left- and right-hand helical water chains. Inorg Chem Comm, 2008, 11: 958–960

    Article  Google Scholar 

  22. Martin D P, Montney M R, Supkowski R M, et al. Cadmium glutarate coordination polymers containing hydrogen-bonding capable tethering organodiimines: From double interpenetration to supra-molecular cavities containing an unprecedented water tape morphology. Cryst Growth Des, 2008, 8: 3091–3097

    Article  Google Scholar 

  23. Zhao B, Cheng P, Chen X Y. Design and synthesis of 3d–4f metal-based zeolite-type materials with a 3D nanotubular structure encapsulated “water” pipe. J Am Chem Soc, 2004, 126: 3012–3013

    Article  Google Scholar 

  24. Li Y, Jiang L, Feng X L, et al. Anion dependent water clusters encapsulated inside a cryptand cavity. Cryst Growth Des, 2008, 8: 3689–3694

    Article  Google Scholar 

  25. Cheng J W, Zheng S T, Liu W, et al. An unusual eight-connected self-penetrating ilc net constructed by dinuclear lanthanide building units. CrystEngComm, 2008, 10: 765–769

    Article  Google Scholar 

  26. Mir M H, Kitagawa S, Vittal J J. Two- and three-fold interpenetrated metal-organic frameworks from one-pot crystallization. Inorg Chem, 2008, 47: 7728–7733

    Article  Google Scholar 

  27. Blatov V A, Carlucci L, Proserpio D M. Interpenetrating metal-organic and inorganic 3D networks: A computer-aided systematic investigation. part I. Analysis of the cambridge structural database. Cryst Eng Comm, 2004, 6: 377–395

    Google Scholar 

  28. Wang X L, Cao Q, Wang E B, et al. Metal nuclearity modulated four-, six-, and eight-connected entangled frameworks based on mono-, bi-, and trimetallic cores as nodes. Chem Eur J, 2006, 12: 2680–2691

    Article  Google Scholar 

  29. Kesanli B, Cui Y, Smith M R, et al. Highly interpenetrated metal-organic frameworks for hydrogen storage. Angew Chem Int Ed, 2005, 44: 72–75

    Article  Google Scholar 

  30. Ye B H, Ding B B, Weng Y Q, et al. Multidimensional networks constructed with isomeric benzenedicarboxylates and 2,2′-biimi-dazole based on mono-, bi-, and trinuclear units. Cryst Growth Des, 2005, 5: 801–806

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoYu Yang.

Additional information

Supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 20725101), Major State Basic Research Development Program of China (Grant No. 2006CB932904), Natural Science Foundation of Fujian Province (Grant Nos. E0510030, 2008F3120), National Natural Science Fund of China (Grant Nos. 50872133, 20821061), and Knowledge Innovation Program of the CAS (Grant No. KJCX2.YW.H01)

About this article

Cite this article

Jia, X., Zhou, J., Zhao, J. et al. A new 3-D Gd-Cu heterometallic polymer [Gd2Cu3(bpy)2-(ip)6]·6H2O with a non-interpenetrated α-Po net. Chin. Sci. Bull. 54, 4272–4276 (2009). https://doi.org/10.1007/s11434-009-0549-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0549-9

Keywords

Navigation