Chinese Science Bulletin

, Volume 54, Issue 17, pp 2991–2997 | Cite as

Field experiment on a robust hierarchical metropolitan quantum cryptography network

  • FangXing Xu
  • Wei ChenEmail author
  • Shuang Wang
  • ZhenQiang Yin
  • Yang Zhang
  • Yun Liu
  • Zheng Zhou
  • YiBo Zhao
  • HongWei Li
  • Dong Liu
  • ZhengFu HanEmail author
  • GuangCan Guo
Articles/Quantum Information


A hierarchical metropolitan quantum cryptography network upon the inner-city commercial telecom fiber cables is reported in this paper. The seven-user network contains a four-node backbone net with one node acting as the subnet gateway, a two-user subnet and a single-fiber access link, which is realized by the Faraday-Michelson interferometer set-ups. The techniques of the quantum router, optical switch and trusted relay are assembled here to guarantee the feasibility and expandability of the quantum cryptography network. Five nodes of the network are located in the government departments and the secure keys generated by the quantum key distribution network are utilized to encrypt the instant video, sound, text messages and confidential files transmitting between these bureaus. The whole implementation including the hierarchical quantum cryptographic communication network links and the corresponding application software shows a big step toward the practical user-oriented network with a high security level.


quantum cryptography quantum key distribution quantum cryptography network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11434_2009_526_MOESM1_ESM.pdf (266 kb)
Supplementary material, approximately 268 KB.


  1. 1.
    Muller A, Herzog T, Huttner B, et al. “Plug and play” systems for quantum cryptography. Appl Phys Lett, 1997, 70: 793–795CrossRefGoogle Scholar
  2. 2.
    Gobby C, Yuan Z L, Shields A J. Quantum key distribution over 122 km of standard telecom fiber. Appl Phys Lett, 2004, 84: 3762–3764CrossRefGoogle Scholar
  3. 3.
    Mo X F, Zhu B, Han Z F, et al. Faraday-Michelson system for quantum cryptography. Opt Lett, 2005, 30: 2632–2634CrossRefGoogle Scholar
  4. 4.
    Zhao Y, Qi B, Ma X F, et al. Experimental quantum key distribution with decoy states. Phys Rev Lett, 2006, 96: 070502CrossRefGoogle Scholar
  5. 5.
    Takesue H, Nam S W, Zhang Q, et al. Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat Photonics, 2007, 1: 343–348CrossRefGoogle Scholar
  6. 6.
    Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984. 175–179Google Scholar
  7. 7.
    Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145–195CrossRefGoogle Scholar
  8. 8.
    Zeng G H, Keitel C H. Arbitrated quantum-signature scheme. Phys Rev A, 2002, 65: 042312CrossRefGoogle Scholar
  9. 9.
    Chen K, Lo H K. Multi-partite quantum cryptographic protocols with noisy GHZ states. Quant Inform Comput, 2007, 7: 689–715Google Scholar
  10. 10.
    Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantum-secret sharing schemes. Phys Rev A, 2004, 69: 052307CrossRefGoogle Scholar
  11. 11.
    Yan F L, Gao T, Li Y C. Quantum secret sharing between multiparty and multiparty with four states. Sci China Ser G, 2007, 50: 572–580CrossRefGoogle Scholar
  12. 12.
    Townsend P D, Phoenix S J D, Blow K J, et al. Quantum cryptography for multi-user passive optical networks. Electron Lett, 1994, 30: 1875CrossRefGoogle Scholar
  13. 13.
    Townsend P D. Quantum cryptography on multi-user optical fibre networks. Nature, 1997, 385: 47–49CrossRefGoogle Scholar
  14. 14.
    Elliott C. Building the quantum network. New J Phys, 2002, 4: 46.1–46.12CrossRefGoogle Scholar
  15. 15.
    Chen W, Han Z F, Zhang T, et al. Field experimental “star type” metropolitan quantum key distribution network. IEEE Photonics Tech Lett, 2009, 21: 575–577CrossRefGoogle Scholar
  16. 16.
    Poppe A, Peev M, Maurhart O. Outline of the SECOQC quantumkey- distribution network in Vienna. Int J Quantum Inf, 2008, 6: 209–218CrossRefGoogle Scholar
  17. 17.
    Chen T Y, Liang H, Liu Y, et al. Field test of a practical secure communication network with decoy-state quantum cryptography. Optics Express, 2009, 17: 6540–6549CrossRefGoogle Scholar
  18. 18.
    Han Z F, Mo X F, Gui Y Z, et al. Stability of phase-modulated quantum key distribution systems. Appl Phys Lett, 2005, 86: 221103CrossRefGoogle Scholar
  19. 19.
    Chen W, Han Z F, Mo X F, et al. Active phase compensation of quantum key distribution system. Chinese Sci Bull, 2008, 53: 1310–1314CrossRefGoogle Scholar
  20. 20.
    Subacius D, Zavriyev A, Trifonov A. Backscattering limitation for fiber-optic quantum key distribution systems. Appl Phys Lett, 2005, 86: 011103CrossRefGoogle Scholar
  21. 21.
    Zhang T, Mo X F, Han Z F, et al. Extensible router for a quantum key distribution network. Phys Lett A, 2008, 372: 3957–3962CrossRefGoogle Scholar
  22. 22.
    Tang X, Ma L J, Mink A, et al. Demonstration of an active quantum key distribution network. Proc SPIE, 2006, 6305: 630506CrossRefGoogle Scholar
  23. 23.
    Wen H, Han Z F, Guo G C, et al. The queuing model for quantum key distribution network. Chin Phys B, 2009, 18: 46–50CrossRefGoogle Scholar
  24. 24.
    Wang W Y, Wang C, Zhang G Y, et al. Arbitrarily long distance quantum communication using inspection and power insertion. Chinese Sci Bull, 2009, 54: 158–162CrossRefGoogle Scholar
  25. 25.
    Wen H, Han Z F, Zhao Y B, et al. Multiple stochastic paths scheme on partially-trusted relay quantum key distribution network. Sci China Ser F, 2009, 52: 18–22CrossRefGoogle Scholar
  26. 26.
    Hwang W Y. Quantum key distribution with high loss: Toward global secure communication. Phys Rev Lett, 2003, 91: 057901CrossRefGoogle Scholar
  27. 27.
    Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys Rev Lett, 2005, 94: 230503CrossRefGoogle Scholar
  28. 28.
    Lo H K, Ma X F, Chen K. Decoy state quantum key distribution. Phys Rev Lett, 2005, 94: 230504CrossRefGoogle Scholar
  29. 29.
    Wang X B. Decoy-state protocol for quantum cryptography with four different intensities of coherent light. Phys Rev A, 2005, 72: 012322CrossRefGoogle Scholar
  30. 30.
    Gottesman D, Lo H K, Lutkenhaus N, et al. Security of quantum key distribution with imperfect devices. Quant Inform Comput, 2004, 5: 325–360Google Scholar
  31. 31.
    Ma X F, Qi B, Zhao Y, et al. Practical decoy state for quantum key distribution. Phys Rev A, 2005, 72: 012326CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • FangXing Xu
    • 1
  • Wei Chen
    • 1
    Email author
  • Shuang Wang
    • 1
  • ZhenQiang Yin
    • 1
  • Yang Zhang
    • 1
  • Yun Liu
    • 1
  • Zheng Zhou
    • 1
  • YiBo Zhao
    • 1
  • HongWei Li
    • 1
    • 2
  • Dong Liu
    • 1
  • ZhengFu Han
    • 1
    Email author
  • GuangCan Guo
    • 1
  1. 1.Key Laboratory of Quantum Information (CAS)University of Science and Technology of ChinaHefeiChina
  2. 2.Electronic Technology InstituteInformation Engineering UniversityZhengzhouChina

Personalised recommendations