Skip to main content
Log in

Field experiment on a robust hierarchical metropolitan quantum cryptography network

  • Articles/Quantum Information
  • Published:
Chinese Science Bulletin

Abstract

A hierarchical metropolitan quantum cryptography network upon the inner-city commercial telecom fiber cables is reported in this paper. The seven-user network contains a four-node backbone net with one node acting as the subnet gateway, a two-user subnet and a single-fiber access link, which is realized by the Faraday-Michelson interferometer set-ups. The techniques of the quantum router, optical switch and trusted relay are assembled here to guarantee the feasibility and expandability of the quantum cryptography network. Five nodes of the network are located in the government departments and the secure keys generated by the quantum key distribution network are utilized to encrypt the instant video, sound, text messages and confidential files transmitting between these bureaus. The whole implementation including the hierarchical quantum cryptographic communication network links and the corresponding application software shows a big step toward the practical user-oriented network with a high security level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muller A, Herzog T, Huttner B, et al. “Plug and play” systems for quantum cryptography. Appl Phys Lett, 1997, 70: 793–795

    Article  Google Scholar 

  2. Gobby C, Yuan Z L, Shields A J. Quantum key distribution over 122 km of standard telecom fiber. Appl Phys Lett, 2004, 84: 3762–3764

    Article  Google Scholar 

  3. Mo X F, Zhu B, Han Z F, et al. Faraday-Michelson system for quantum cryptography. Opt Lett, 2005, 30: 2632–2634

    Article  Google Scholar 

  4. Zhao Y, Qi B, Ma X F, et al. Experimental quantum key distribution with decoy states. Phys Rev Lett, 2006, 96: 070502

    Article  Google Scholar 

  5. Takesue H, Nam S W, Zhang Q, et al. Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat Photonics, 2007, 1: 343–348

    Article  Google Scholar 

  6. Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984. 175–179

  7. Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145–195

    Article  Google Scholar 

  8. Zeng G H, Keitel C H. Arbitrated quantum-signature scheme. Phys Rev A, 2002, 65: 042312

    Article  Google Scholar 

  9. Chen K, Lo H K. Multi-partite quantum cryptographic protocols with noisy GHZ states. Quant Inform Comput, 2007, 7: 689–715

    Google Scholar 

  10. Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantum-secret sharing schemes. Phys Rev A, 2004, 69: 052307

    Article  Google Scholar 

  11. Yan F L, Gao T, Li Y C. Quantum secret sharing between multiparty and multiparty with four states. Sci China Ser G, 2007, 50: 572–580

    Article  Google Scholar 

  12. Townsend P D, Phoenix S J D, Blow K J, et al. Quantum cryptography for multi-user passive optical networks. Electron Lett, 1994, 30: 1875

    Article  Google Scholar 

  13. Townsend P D. Quantum cryptography on multi-user optical fibre networks. Nature, 1997, 385: 47–49

    Article  Google Scholar 

  14. Elliott C. Building the quantum network. New J Phys, 2002, 4: 46.1–46.12

    Article  Google Scholar 

  15. Chen W, Han Z F, Zhang T, et al. Field experimental “star type” metropolitan quantum key distribution network. IEEE Photonics Tech Lett, 2009, 21: 575–577

    Article  Google Scholar 

  16. Poppe A, Peev M, Maurhart O. Outline of the SECOQC quantumkey- distribution network in Vienna. Int J Quantum Inf, 2008, 6: 209–218

    Article  Google Scholar 

  17. Chen T Y, Liang H, Liu Y, et al. Field test of a practical secure communication network with decoy-state quantum cryptography. Optics Express, 2009, 17: 6540–6549

    Article  Google Scholar 

  18. Han Z F, Mo X F, Gui Y Z, et al. Stability of phase-modulated quantum key distribution systems. Appl Phys Lett, 2005, 86: 221103

    Article  Google Scholar 

  19. Chen W, Han Z F, Mo X F, et al. Active phase compensation of quantum key distribution system. Chinese Sci Bull, 2008, 53: 1310–1314

    Article  Google Scholar 

  20. Subacius D, Zavriyev A, Trifonov A. Backscattering limitation for fiber-optic quantum key distribution systems. Appl Phys Lett, 2005, 86: 011103

    Article  Google Scholar 

  21. Zhang T, Mo X F, Han Z F, et al. Extensible router for a quantum key distribution network. Phys Lett A, 2008, 372: 3957–3962

    Article  Google Scholar 

  22. Tang X, Ma L J, Mink A, et al. Demonstration of an active quantum key distribution network. Proc SPIE, 2006, 6305: 630506

    Article  Google Scholar 

  23. Wen H, Han Z F, Guo G C, et al. The queuing model for quantum key distribution network. Chin Phys B, 2009, 18: 46–50

    Article  Google Scholar 

  24. Wang W Y, Wang C, Zhang G Y, et al. Arbitrarily long distance quantum communication using inspection and power insertion. Chinese Sci Bull, 2009, 54: 158–162

    Article  Google Scholar 

  25. Wen H, Han Z F, Zhao Y B, et al. Multiple stochastic paths scheme on partially-trusted relay quantum key distribution network. Sci China Ser F, 2009, 52: 18–22

    Article  Google Scholar 

  26. Hwang W Y. Quantum key distribution with high loss: Toward global secure communication. Phys Rev Lett, 2003, 91: 057901

    Article  Google Scholar 

  27. Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys Rev Lett, 2005, 94: 230503

    Article  Google Scholar 

  28. Lo H K, Ma X F, Chen K. Decoy state quantum key distribution. Phys Rev Lett, 2005, 94: 230504

    Article  Google Scholar 

  29. Wang X B. Decoy-state protocol for quantum cryptography with four different intensities of coherent light. Phys Rev A, 2005, 72: 012322

    Article  Google Scholar 

  30. Gottesman D, Lo H K, Lutkenhaus N, et al. Security of quantum key distribution with imperfect devices. Quant Inform Comput, 2004, 5: 325–360

    Google Scholar 

  31. Ma X F, Qi B, Zhao Y, et al. Practical decoy state for quantum key distribution. Phys Rev A, 2005, 72: 012326

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Chen or ZhengFu Han.

Additional information

Supported by the Wuhu Government and China Telecommunications Corporation, Wuhu Branch, and National Basic Research Program of China (Grant No. 2006CB921900), National Natural Science Foundation of China (Grant Nos. 60537020, 60621064) and Innovation Funds of Chinese Academy of Sciences

Electronic supplementary material

About this article

Cite this article

Xu, F., Chen, W., Wang, S. et al. Field experiment on a robust hierarchical metropolitan quantum cryptography network. Chin. Sci. Bull. 54, 2991–2997 (2009). https://doi.org/10.1007/s11434-009-0526-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0526-3

Keywords

Navigation