Skip to main content
Log in

The horizontal transmission of Cryphonectria hypovirus 1 (CHV1) is affected by virus strains

  • Articles/Plant Pathology
  • Published:
Chinese Science Bulletin

Abstract

The effects of virus strains on the virus transmission in Cryphonectria parasitica were observed in this study. In laboratory assays by replicating vegetative incompatibility (vic) genotypes in independent fungal isolates, we quantified the transmission of three CHV1 viruses between isolates heteroallelic at one or two vic loci, and demonstrated that different CHV1 virus isolates determined their transmission abilities. The results suggested that using the hypoviruses with higher transmission abilities could increase the efficiencies of the biological control of chestnut blight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anagnostakis S L. Biological control of chestnut blight. Science, 1982, 215: 466–471

    Article  Google Scholar 

  2. Grente J, Sautet S. Biological control of chestnut blight in France. In: MacDonald W L, Ceeh F C, Luchok J, et al., eds. Proceedings of the American Chestnut Symposium. Morgantown: West Virginia University Books, 1978. 30–34

    Google Scholar 

  3. Hepting G H. Death of the American chestnut. J For Hist, 1974, 18: 60–67

    Google Scholar 

  4. Chen B S, Nuss D L. Infectious cDNA clone of hypovirus CHV1-Euro7: A comparative virology approach to investigate virus-mediated hypovirulence of the chestnut blight fungus Cryphonectria parasitica. J Virol, 1999, 73: 985–992

    Google Scholar 

  5. Craven M G, Pawlyk D M, Choi G H, et al. Papain-like protease p29 as a symptom determinant encoded by a hypovirulence-associated virus of the chestnut blight fungus. J Virol, 1993, 67: 6513–6521.

    Google Scholar 

  6. Nuss D L. Biological control of chestnut blight: an example of virus mediated attenuation of fungal pathogenesis. Microbiol Rev, 1992, 56: 561–576

    Google Scholar 

  7. Anagnostakis S L, Day P R. Hypovirulence conversion in Endothia parasitica. Phytopathology, 1979, 69: 1226–1229

    Article  Google Scholar 

  8. van Alfen N K, Jaynes R A, Anagnostakis S L, et al. Chestnut blight: Biological control by transmissible hypovirulence in Endothia parasitica. Science, 1975, 189: 890–891

    Article  Google Scholar 

  9. Heiniger U, Rigling D. Biological control of chestnut blight in Europe. Ann Rev Phytopathol, 1994, 32: 581–599

    Article  Google Scholar 

  10. Wang K R, Shao J Y, Lu J Y. On vegetative compatibility of Cryphonectria parasitica in Jiangsu and Anhui (in Chinese). J Nanjing Agri Univ, 1991, 14: 44–48

    Google Scholar 

  11. Liu Y C, Milgroom M G. Correlation between hypovirus transmission and the number of vegetative incompatibility (vic) genes different among isolates from a natural population of Cryphonectria parasitica. Phytopathology, 1996, 86: 79–86

    Article  Google Scholar 

  12. Cortesi P, McCulloch C E, Song H, et al. Genetic control of horizontal virus transmission in the chestnut blight fungus, Cryphonectria parasitica. Genetics, 2001, 159: 107–118

    Google Scholar 

  13. Bissegger M, Rigling D, Heiniger U. Population structure and disease development of Cryphonectria parasitica in European chestnut forests in the presence of natural hypovirulence. Phytopathology, 1997, 87: 50–59

    Article  Google Scholar 

  14. Milgroom M G, Cortesi P. Biological control of chestnut blight with hypovirulence: A critical analysis. Annu Rev Phytopathol, 2004, 42: 311–338

    Article  Google Scholar 

  15. Ding P, Liu F X, Xu C X, et al. Transmission of Cryphonectria hypovirus to protect chestnut trees from chestnut blight disease. Biol Control, 2007, 40: 9–14

    Article  Google Scholar 

  16. Wang K R, Cheng G Y, Liu Y C, et al. Effects of VC genes and dsRNAs on transmission of dsRNA in Cryphonectria parasitica (in Chinese). Mycosystema, 1997, 16: 30–35

    Google Scholar 

  17. Elliston J E. Characterization of dsRNA-free and dsRNA-containing strains of Endothia parasitica in relation to hypovirulence. Phytopathology, 1985, 75: 151–158

    Article  Google Scholar 

  18. Anagnostakis S L. Cryphonectria parasitica, cause of chestnut blight. Adv Plant Pathol, 1988, 6: 123–136

    Google Scholar 

  19. Carbone I, Liu Y C, Hillman B I, et al. Recombination and migration of Cryphonectria hypovirus 1 as inferred from gene genealogies and the coalescent. Genetics, 2004, 166: 1611–1629

    Article  Google Scholar 

  20. Prospero S, Conedera M, Heiniger U, et al. Saprophytic activity and sporulation of Cryphonectria parasitica on dead chestnut wood in forests with naturally established hypovirulence. Phytopathology, 2006, 96: 1337–1344

    Article  Google Scholar 

  21. Milgroom M G, Lipari S E. Population differentiation in the chestnut blight fungus, Cryphonectria parasitica, in eastern North America. Phytopathology, 1995, 85: 155–160

    Article  Google Scholar 

  22. Milgroom M G, Wang K, Zhou Y, et al. Intercontinental population structure of the chestnut blight fungus, Cryphonectria parasitica. Mycologia, 1996, 88: 179–190

    Article  Google Scholar 

  23. Milgroom M G, Cortesi P. Analysis of population structure of the chestnut blight fungus based on vegetative incompatibility genotypes. Proc Natl Acad Sc USA, 1999, 96: 10518–10523

    Article  Google Scholar 

  24. Wang K R, Liu Y C, Milgroom M G. The VC genotypes in chestnut blght fungus, Cryphonectria parasitica. In: Tan W Z, ed. Recent Research Achievement of Yong Mycologists in China (in Chinese). Chongqing: Southwest China Normal University Press, 1995. 126–130

    Google Scholar 

  25. Cortesi P, Milgroom M G. Genetics of vegetative incompatibility in Cryphonectria parasitica. Appl Environ Microbiol, 1998, 64: 2988–2994

    Google Scholar 

  26. Huber D H. Genetic analysis of vegetative incompatibility polymorphisms and horizontal transmission in the chestnut blight fungus Cryphonectria parasitica. Doctor Dissertation. East Lansing, MI: Michigan State University, 1996. 1–10

    Google Scholar 

  27. Anagnostakis S L. Conversion to curative morphology in Endothia parasitica and its restriction by vegetative compatibility. Mycologia, 1983, 75: 777–780

    Article  Google Scholar 

  28. Peever T L, Liu Y C, Cortesi P, et al. Variation in tolerance and virulence in the chestnut blight fungus hypovirus interaction. Appl Environ Microbiol, 2000, 66: 4863–4869

    Article  Google Scholar 

  29. Papazova-Anakieva I, Sotirovski K, Cortesi P, et al. Horizontal transmission of hypoviruses between vegetative compatibility types of Cryphonectria parasitica in Macedonia. Eur J Plant Pathol, 2008, 120: 35–42

    Article  Google Scholar 

  30. Anagnostakis S L. Chestnut blight: The classical problem of an introduced pathogen. Mycologia, 1987, 79: 23–37

    Article  Google Scholar 

  31. Liu Y C, Milgroom M G. High diversity of vegetative compatibility types in Cryphonectria parasitica in Japan and China. Mycologia, 2007, 99: 279–284

    Article  Google Scholar 

  32. Liu F X, Ding P, Xu C X, et al. Genetic Diversity of Cryphonectria hypovirus 1 in China, Japan and Italy. J Phytopathology, 2007, 155: 662–669

    Article  Google Scholar 

  33. Biella S, Smith M L, Aist J R, et al. Programmed cell death correlates with virus transmission in a filamentous fungus. Proc R Soc London B, 2002, 269: 2269–2276

    Article  Google Scholar 

  34. Glass N L, Kaneko I. Fatal attraction: Noneself recognition and heterokayon incompatibility in flamentous fungie. Eukayyot Cell, 2003, 2: 1–8

    Article  Google Scholar 

  35. Saupe S J. Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol Mol Biol Rev, 2000, 64: 489–502

    Article  Google Scholar 

  36. Smith M L, Gibbs C C, Milgroom M G. Heterokaryon incompatibility function of barrage-associated vegetative incompatibility genes (vic) in Cryphonectria parasitica. Mycologia, 2006, 98(1): 43–50

    Article  Google Scholar 

  37. Clem R J, Fechheimer M, Miller L K. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science, 1991, 254: 1388–1390

    Article  Google Scholar 

  38. Birnbaum M J, Clem R J, Miller L K. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J Virol, 1994, 68: 2521–2528

    Google Scholar 

  39. Chen B S, Geletka L M, Nuss D L. Using chimeric hypoviruses to fine-tune the interaction between a pathogenic fungus and its plant host. J Virol, 2000, 74: 7562–7567

    Article  Google Scholar 

  40. Choi G H, Nuss D L. Hypovirulence of chestnut blight fungus conferred by an infectious viral cDNA. Science, 1992, 257: 800–803

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KeRong Wang.

Additional information

Contributed equally to this work

Supported by the National Natural Science Foundation of China (Grant Nos. 30370918, 30470062)

About this article

Cite this article

Deng, Q., Ye, Y., Miao, M. et al. The horizontal transmission of Cryphonectria hypovirus 1 (CHV1) is affected by virus strains. Chin. Sci. Bull. 54, 3053–3060 (2009). https://doi.org/10.1007/s11434-009-0368-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0368-z

Keywords

Navigation