Skip to main content
Log in

Polymer-mediated mesoscale mineralization

  • Progress/Inorganic Chemistry
  • Published:
Chinese Science Bulletin

Abstract

Polymer-controlled mineralization in aqueous solution or in a mixed solvent media, as well as its combination with the interface of air-water can lead to the formation of minerals with unique structures and morphologies, which sheds light on the possibility to mimic the detailed structures of the natural minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Addadi L, Joester D, Nudelman F, et al. Mollusk shell formation: A source of new concepts for understanding biomineralization processes. Chem Eur J, 2006, 12: 980–987

    Article  Google Scholar 

  2. Mann S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. New York: Oxford University Press, 2001

    Google Scholar 

  3. Weiner S. Aspartic acid-rich proteins: Major components of the soluble organic matrix of mollusk shells. Calcif Tissue Int, 1979, 29: 163–167

    Article  Google Scholar 

  4. Wheeler A P, Low K C, Sikes C S. ACS Symposium Series 444. Washington: American Chemical Society, 1991. 72–84

    Google Scholar 

  5. Cölfen H. Double-hydrophilic block copolymers: Synthesis and application as novel surfactants and crystal growth modifiers. Macromol Rapid Commun, 2001, 22: 219–252

    Article  Google Scholar 

  6. Yu S H, Cölfen H. Bio-inspired crystal morphogenesis by hydrophilic polymers. J Mater Chem, 2004, 14: 2124–2147

    Article  Google Scholar 

  7. Cölfen H, Antonietti M. Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers. Langmuir, 1998, 14: 582–589

    Article  Google Scholar 

  8. Chen S F, Yu S H, Wang T X, et al. Polymer-directed formation of unusual CaCO3 pancakes with controlled surface structures. Adv Mater, 2005, 17: 1461–1465

    Article  Google Scholar 

  9. Penn R L, Banfeild J F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions. Geochim Cosmochim Acta, 1999, 63: 1549–1557

    Article  Google Scholar 

  10. Tang Z Y, Kotov N A, Giersig M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science, 2002, 297: 237–240

    Article  Google Scholar 

  11. Cölfen H, Antonietti M. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Ed, 2005, 44: 5576–5591

    Article  Google Scholar 

  12. Xu A W, Antonietti M, Yu S H, et al. Polymer-mediated mineralization and self-similar mesoscale-organized calcium carbonate with unusual superstructures. Adv Mater, 2008, 20: 1333–1338

    Article  Google Scholar 

  13. Yu S H, Cölfen H, Tauer K, et al. Tectonic arrangement of BaCO3 nanocrystals into helices induced by a racemic block copolymer. Nat Mater, 2005, 4: 51–55

    Article  Google Scholar 

  14. Zhang Z P, Gao D M, Zhao H, et al. Biomimetic assembly of polypeptide-stabilized CaCO3 nanoparticles. J Phys Chem B, 2006, 110: 8613–8618

    Article  Google Scholar 

  15. Gao Y X, Yu S H, Cong H P, et al. Block-copolymer-controlled growth of CaCO3 microrings. J Phys Chem B, 2006, 110: 6432–6436

    Article  Google Scholar 

  16. Kulak A N, Iddon P, Li Y T, et al. Continuous structural evolution of calcium carbonate particles: A unifying model of copolymer-mediated crystallization. J Am Chem Soc, 2007, 129: 3729–3736

    Article  Google Scholar 

  17. Xu A W, Dong W F, Antonietti M, et al. Polymorph switching of calcium carbonate crystals by polymer-controlled crystallization. Adv Funct Mater, 2008, 18: 1307–1313

    Article  Google Scholar 

  18. Nassif N, Pinna N, Gehrke N, et al. Amorphous layer around aragonite platelets in nacre. Proc Natl Acad Sci USA, 2005, 102, 12653–12655

    Article  Google Scholar 

  19. Xu X R, Cai A H, Liu R, et al. Amorphous calcium carbonate in biomineralization. Progr Chem, 2008, 20: 54–59

    Google Scholar 

  20. Xu X R, Han J T, Cho K. Formation of amorphous calcium carbonate thin films and their role in biomineralization. Chem Mater, 2004, 16, 1740–1746

    Article  Google Scholar 

  21. Aizenberg J, Muller D A, Grazul J L. Direct fabrication of large micropatterned single crystals. Science, 2003, 299: 1205–1208

    Article  Google Scholar 

  22. Cai A H, Xu X R, Pan H H, et al. Direct synthesis of hollow vaterite nanospheres from amorphous calcium carbonate nanoparticles via phase transformation. J Phys Chem C, 2008, 112: 11324–11330

    Article  Google Scholar 

  23. Li C, Qi L M. Bioinspired fabrication of 3D ordered macroporous single crystals of calcite from a transient amorphous phase. Angew Chem Int Ed, 2008, 47: 2388–2393

    Article  Google Scholar 

  24. Guo X H, Yu S H, Cai G B. Crystallization in a mixture of solvents by using a crystal modifier: Morphology control in the synthesis of highly monodisperse CaCO3 microspheres. Angew Chem Int Ed, 2006, 45: 3977–3981

    Article  Google Scholar 

  25. Guo X H, Xu A W, Yu S H. Crystallization of calcium carbonate mineral with hierarchical structures in DMF solution under control of poly(ethylene glycol)-b-poly(L-gultamic acid): Effects of crystallization temperature and polymer concentration. Cryst Growth Des, 2008, 8: 1233–1242

    Article  Google Scholar 

  26. Qi L M, Li J, Ma J M. Morphological control or CaCO3 particles by a double-hydrophilic block copolymer in mixed alcohol-water solvents (in Chinese). Chem J Chinese U, 2002, 23: 1595–1597

    Google Scholar 

  27. Chen S F, Yu S H, Jiang J, et al. Polymorph discrimination of CaCO3 mineral in an ethanol/water solution: Formation of complex vaterite superstructures and aragonite rods. Chem Mater, 2006, 10: 115–122

    Article  Google Scholar 

  28. Guo X H, Yu S H. Controlled mineralization of barium carbonate mesocrystals in a mixed solvent and at the air/solution interface using a double hydrophilic block copolymer as crystal modifier. Cryst Growth Des, 2007, 7: 354–359

    Article  Google Scholar 

  29. Gao Y X, Yu S H, Guo X H. Double hydrophilic block copolymer controlled growth and self-assembly of CaCO3 multilayered structures at the air/water interface. Langmuir, 2006, 6125–6129

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShuHong Yu.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 50732006, 20621061, and 20671085), Specialized Research Fund for the Doctoral Program of Ministry of Education, and Partner-Group of the Chinese Academy of Sciences-the Max Planck Society

About this article

Cite this article

Chen, S., Yu, S. Polymer-mediated mesoscale mineralization. Chin. Sci. Bull. 54, 1854–1858 (2009). https://doi.org/10.1007/s11434-009-0331-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0331-z

Keywords

Navigation