Advertisement

Chinese Science Bulletin

, Volume 54, Issue 12, pp 2013–2017 | Cite as

Design and fabrication of superconducting HEB mixer

  • JinPing Wang
  • YangBin Li
  • Lin KangEmail author
  • Yu Wang
  • YangYin Zhong
  • Min Liang
  • Jian Chen
  • ChunHai Cao
  • WeiWei Xu
  • PeiHeng Wu
Articles/Electronics Physics

Abstract

This paper describes the design and fabrication of superconducting hot electron bolometer (HEB) mixer based on ultra-thin superconducting NbN films. The high quality films were epitaxially grown on high resistance Si substrates. The device was fabricated by magnetron sputtering, electron beam lithography (EBL), reactive ion etching (RIE), lithography, and so on. The device’s resistance-temperature (R-T) curves and current-voltage (I-V) curves were studied. The results of THz response of the device are presented. Y-factor technique was used to measure the device’s noise temperature. When the device was irradiated with a laser radiation of 2.5 THz, the obtained lowest noise temperature of the device was 2213 K.

Keywords

HEB ultra-thin superconducting NbN film planar equiangular spiral antenna noise temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blundell R, Tong C E. Submillimeter receivers for radio astronomy. IEEE, 1992, 80: 1702–1720CrossRefGoogle Scholar
  2. 2.
    Kooi J M, Stern J A, Chattopadhyay G, et al. Low-loss NbTiN films for THz SIS mixer tuning circuits. In: Proceeding of 8th International Symposium on Space THz Technology, 1997.Google Scholar
  3. 3.
    Karpov A, Miller D, Rice F, et al. Low noise 1.2 THz SIS receiver. In: Proceeding of the 8th International Superconducting Electronics Conference, 2001. 521–522Google Scholar
  4. 4.
    Cherednichenko S, Khosropanah P, Kollberg E, et al. Terahertz superconducting hot-electron bolometer mixers. Physica C, 2002, 372: 407–415CrossRefGoogle Scholar
  5. 5.
    Semenov A D, Gol’tsman G N, Sobolewski R. Hot-electron effect in superconductors and its applications for radiation sensors. Supercond Sci Tech, 2002, 15: R1–R16CrossRefGoogle Scholar
  6. 6.
    Gerecht E, Musante F C, Zhuang Y, et al. Improved noise temperature and bandwidth of phonon-cooled NbN hot electron bolometric mixers. In: Proceeding of the International Semiconductor Device Research Symposium, 1999. 559Google Scholar
  7. 7.
    Gao J R, Hajenius M, Yang Z Q, et al. Terahertz superconducting hot electron bolometer heterodyne receivers. IEEE Trans Appl Supercond, 2007, 17: 252–258CrossRefGoogle Scholar
  8. 8.
    Walker C K, Kulesa C A. Terahertz astronomy from the coldest place on earth. In: Proceeding of Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, 2005Google Scholar
  9. 9.
    Amato M J, Benford D J, Moseley S H, et al. An engineering concept and enabling technologies for a large single aperture far-infrared observatory (SAFIR/FAIR). Proc SPIE, 2002, 4850: 1120–1131CrossRefGoogle Scholar
  10. 10.
    Graauw ThDe, Helmich F P, Cernicharo J, et al. Exploratory submm space radio-interferometric telescope. Adv Space Res, 2005, 36: 1109–1113CrossRefGoogle Scholar
  11. 11.
    Merkel H, Khosropanah P, Yagoubov P, et al. A hot-spot mixer model for phonon-cooled NbN hot electron bolometric mixers. IEEE Trans Appl Supercond, 1999, 9: 4201–4204CrossRefGoogle Scholar
  12. 12.
    Boris S K, William R M, Rolf A M. Optimal choice of material for HEB superconducting mixers. IEEE, 1999, 9: 4213–4215Google Scholar
  13. 13.
    Guilletc B, Arthursson O, Mechin L, et al. Properties of ultra-thin NbN films for membrane-type THz HEB. J Low Temp Phys, 2008, 151: 570–574CrossRefGoogle Scholar
  14. 14.
    Hajenius M, Baselmans J, Baryshev A, et al. Full characterization and analysis of a terahertz heterodyne receiver based on a NbN hot electron bolometer. J Appl Phys, 2006, 100: 074507CrossRefGoogle Scholar
  15. 15.
    Khosropanah P, Merkel H, Yngvesson S, et al. A distributed device model for phonon-cooled HEB mixers predicting IV characteristics, gain and noise. In: Proceeding of 11th International Symposium on Space Terahertz Technology, 2000. 474–488Google Scholar
  16. 16.
    Wang H B. 90 GHz harmonic mixing based on high temperature superconducting Josephson junction (in Chinese). Chinese Sci Bull (Chinese Ver), 1993, 38: 687Google Scholar
  17. 17.
    Xu W W, Liu G Q, Zhou G D, et al. Harmonic frequency mixing using high Tc superconductor Josephson junction mounted on pulse tube cryocooler. Chinese Sci Bull, 2001, 46: 1555–1556CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • JinPing Wang
    • 1
  • YangBin Li
    • 1
  • Lin Kang
    • 1
    Email author
  • Yu Wang
    • 1
  • YangYin Zhong
    • 1
  • Min Liang
    • 1
  • Jian Chen
    • 1
  • ChunHai Cao
    • 1
  • WeiWei Xu
    • 1
  • PeiHeng Wu
    • 1
  1. 1.Research Institute of Superconductor Electronics (RISE), Deptartment of Electronic Science and EngineeringNanjing UniversityNanjingChina

Personalised recommendations