Skip to main content
Log in

Comparison of mantle-derived matierals from different spatiotemporal settings: Implications for destructive and accretional processes of the North China Craton

  • Review/Geochemistry
  • Published:
Chinese Science Bulletin

Abstract

Cratonic destruction or lithospheric thinning beneath North China makes it as one of the most ideal areas for the studying on the formation and evolution of continent. However, the mechanism, time, range and dynamic setting of the destruction, even the lithospheric status before the destruction, are contentious. The comparison among mantle xenoliths in the volcanic rocks from different captured times (e.g. Paleozoic, Mesozoic and Cenozoic) and locations (e.g. intra-plate or its rim, the translithospheric Tanlu fault or the North-South Gravity Line), and peridotitic massifs within the Sulu-Dabie ultrahigh-pressure metamorphism belt along the southern margin of the North China Craton, indicates that (1) the cratonic lithosphere is heterogeneous in structure and composition, and contains mantle weak zones; and (2) the Mesozoic-Cenozoic lithospheric thinning process is complex, including lateral spreading of lithosphere, interaction between melt and peridotite, non-even asthenospheric erosion (huge lithospheric thinning), and the limited lithospheric accretion and thus thickening, which resulted in the final replacement of the refractory cratonic lithosphere by juvenile fertile mantle. In early Mesozoic, the integrity of the North China Craton was interrupted, even destroyed by subduction and collision of the Yangtze block. The mantle wedge of the North China Craton was also metasomatized and modified by melt/fluids revealed from the subducted Yangtze continent. Lithospheric mantle extension and tectonic intrusion of the North China Craton also occurred, accompanied by the asthenospheric upwelling that due to the detachement of the subducted Yangtze continent (orogenic root). During early Cretaceous-early Tertiary, the huge thinning of lithosphere was triggered by the upwelling asthenosphere due to the subduction of the Pacific plate. Since late Tertiary, the cooling of the upwelling asthenosphere resulted in the replacement of the mantle in existence by the newly accreted lithosphere, accompanied with a little thickness in lithosphere and thus finally achieved the lithospheric thinning as a whole. The translithospheric faults, such as the Tanlu fault, play excellent channels for asthenospheric upwelling. Meanwhile, the channels in lithosphere are usually irregular, which resulted in different eruption times of magma. Peridotite xenolith in the basalts erupted at 100 Ma is mainly fertile, indicating such a fact, that is, the mantle replacement occurred before the eruption (e.g. 125–100 Ma) beneath the eastern part of the North China Craton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Menzies M A. Continental Mantle. London: Oxford Science Publications, 1990. 1–184

    Google Scholar 

  2. Pearson D G. The age of continental roots. Lithos, 1999, 48: 171–194

    Article  Google Scholar 

  3. O’Reilly S Y, Griffin W L, Poudjom Y H, et al. Are lithospheres forever? Tracking changes in subcontinental lithospheric mantle through time. GSA Today, 2001, 11: 4–10

    Article  Google Scholar 

  4. Arndt N. Hot heads and cold tails. Nature, 2000, 407: 458–459

    Article  Google Scholar 

  5. Ernst R E, Buchan K L. Recognizing mantle plumes in the geological record. Annu Rev Earth Planet Sci, 2003, 31: 469–523

    Article  Google Scholar 

  6. Fuchs K. The International lithosphere program. Episodes, 1990, 13: 239–246

    Google Scholar 

  7. Zheng J P, Griffin W L, O’Reilly S Y, et al. Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: constraints on mantle evolution beneath eastern China. J Petrol, 2006, 47: 2233–2256

    Article  Google Scholar 

  8. Griffin W L, O’Reilly S Y, Ryan C G. The composition and origin of sub-continental lithospheric mantle. In: Fei Y, Berka C M, Mysen B O, eds. Mantle Petrology: Field Observations and High-pressure Experimentation: A tribute to Boyd F R J. Geochemical Soc. Special Publication 6, 1999. 13–45

  9. Liu D Y, Nutman A P, Compston W, et al. Remnants of ⩾ 3800 Ma crust in Chinese part of the Sino-Korean craton. Geology, 1992, 20: 339–342

    Article  Google Scholar 

  10. Zheng J P, Griffin W L, O’Reilly S Y, et al. 3.6 Ga lower crust in central China: new evidence on the assembly of the North China Craton. Geology, 2004, 32: 229–232

    Article  Google Scholar 

  11. Lu F X, Han Z G, Zheng J P, et al. Characteristics of the Paleozoic lithospheric mantle in Fuxin, Liaoning Province. Geol Sci Tech Inf (in Chinese), 1991, 10(suppl): 2–20

    Google Scholar 

  12. Lu F X, Zheng J P. Paleozoic nature and deep processes of lithospheric mantle beneath North China. In: Chi J S, Lu F X, eds. Kimberlites and Paleozoic Mantle Beneath North China Platform (in Chinese). Beijing: Science Press, 1996. 215–274

    Google Scholar 

  13. Zheng J P, Lu F X. Mantle xenoliths from kimberlites, Shandong and Liaoning: Paleozoic mantle character and its heterogeneity (in Chinese). Acta Petrol Sin, 1999, 15(1): 65–74

    Google Scholar 

  14. Fan Q C, Hooper P R. The mineral chemistry of ultramafic xenoliths of eastern China: implications for upper mantle composition and the paleogeotherms. J Petrol, 1989, 30: 1117–1158

    Article  Google Scholar 

  15. Fan W M, Menzies M A. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China. Geotect Metal, 1992, 16: 171–179

    Google Scholar 

  16. Xu X S, O’Reilly S Y, Griffin W L, et al. The nature of the Cenozoic Lithosphere at Nushan, Eastern China. In: Flower M, Chung S L, Lo C H, et al, eds. Mantle Dynamics and Plate Interactions in East Asia. Washington D C: American Geophysical Union, 1998. 167–196

    Chapter  Google Scholar 

  17. Zheng J P, O’Reilly S Y, Griffin W L, et al. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong Peninsula, Sino-Korean craton. Int Geol Rev, 1998, 40: 471–499

    Article  Google Scholar 

  18. Chen S H, O’Reilly S Y, Zhou X H, et al. Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean craton, China: evidence from xenoliths. Lithos, 2001, 56: 267–301

    Article  Google Scholar 

  19. Fan W M, Zhang H F, Baker J. On and off the North China Craton: where is the Archean keel? J Petrol, 2001, 41: 933–950

    Article  Google Scholar 

  20. Menzies M A, Fan W M, Zhang M. Paleozoic and Cenozoic lithoprobes and loss of >120 km of Archean lithosphere, Sino-Korean craton, China. In: Prichard H M, ed. Magmatic Processes and Plate Tectonics. Geol Soc Spec Publ, 1993. 76: 71–81

  21. Griffin W L, Zhang, A D, O’Reilly S Y, et al. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. In: Flower M, Chung S L, Lo C H, eds. Mantle Dynamics and Plate Interactions in East Asia Amer Geodynamics. Washington D C: American Geophysical Union, 1998. 107–126

    Chapter  Google Scholar 

  22. Deng J F, Zhao H L, Mo X X. Continental Roots-Plume Tectonic of China: The Key of Continental Kinetic (in Chinese). Beijing: Geological Publishing House, 1996. 1–110

    Google Scholar 

  23. Xu Y G. Roles of thermo-mechanic and chemical erosion in continental lithospheric thinning (in Chinese). Bull Miner Petrol Geochem, 1999, 18: 1–5

    Google Scholar 

  24. Zheng J P. Mesozoic-Cenozoic Mantle Replacement and Lithospheric Thinning Beneath the Eastern China (in Chinese). Wuhan: China University of Geosciences Press, 1999. 1–126

    Google Scholar 

  25. Zheng J P, Lu F X, O’Reilly S Y. Comparison between Paleozoic and Cenozoic lithospheric mantle in the eastern part of the North China block (in Chinese). Acta Geol Sin, 1999, 73: 47–56

    Article  Google Scholar 

  26. Wu F Y, Sun D Y. The Mesozoic mantle and lithospheric thinning in eastern China (in Chinese). J Changchun Univ Sci Tech, 1999, 29(4): 313–318

    Google Scholar 

  27. Zheng J P, Lu F X, O’Reilly S Y. Modification and replacement of lithospheric mantle beneath the eastern part of the North China Craton: LAM-ICPMS analysis on diopsides (in Chinese). Sci China Ser D-Earth Sci, 2000, 30(4): 373–382

    Google Scholar 

  28. Carlson R W. Application of the Pt-Re-Os isotopic systems to mantle geochemistry and geochronology. Lithos, 2005, 82: 249–272

    Article  Google Scholar 

  29. Wu F Y, Walker R J, Yang Y H, et al. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton. Geochim Cosmochim Acta, 2006, 70: 5013–5034

    Article  Google Scholar 

  30. Yang J H, Wu F Y, Shao J A, et al. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth Planet Sci Lett, 2006, 246: 336–352

    Article  Google Scholar 

  31. Deng J F, Mo X X, Zhao H L, et al. A new model for the dynamic evolution of Chinese lithosphere: ‘continental roots-plume tectonics’. Earth Sci Rev, 2004, 65: 223–275

    Article  Google Scholar 

  32. Menzies M, Xu Y G, Zhang H F, et al. Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos, 2007, 96: 1–21

    Article  Google Scholar 

  33. Xu Y G. Diachronous lithospheric thinning of the North China Craton and formation of the Daxin’anling-Taihangshan gravity lineament. Lithos, 2007, 96: 281–298

    Article  Google Scholar 

  34. Zhai M G, Fan Q C, Zhang H F, et al. Lower crustal processes leading to Mesozoic lithospheric thinning beneath eastern North China: underplating, replacement and delamination. Lithos, 2007, 96: 36–54

    Article  Google Scholar 

  35. Zhang H F, Ying J F, Shimoda G, et al. Importance of melt circulation and crust-mantle interaction in the lithospheric evolution beneath the North China Craton: evidence from Mesozoic basalt-borne clinopyroxene xenocrysts and pyroxenite xenoliths. Lithos, 2007, 96: 67–89

    Article  Google Scholar 

  36. Xu X S, Griffin W L, O’Reilly S Y, et al. Re-Os isotopes in mantle xenoliths from eastern China: age constraints and evolution of the lithospheric mantle. Lithos, 2008, 102: 43–64

    Article  Google Scholar 

  37. Zheng J P, Griffin W L, O’Reilly S Y, et al. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochim Cosmochim Acta, 2007, 71: 5203–5225

    Article  Google Scholar 

  38. Wu F Y, Xu Y G, Gao S, et al. Lithospheric thinning and destruction of the North China Craton (in Chinese). Acta Petrol Sin, 2008, 24(6): 1145–1174

    Google Scholar 

  39. Deng J F, Su S G, Liu C, et al. Discussion on the lithospheric thinning of the North China Craton: delamination? or thermal erosion and chemical metasomatism? (in Chinese). Earth Sci Front, 2006, 13(2): 105–119

    Google Scholar 

  40. Wu F Y, Walker R J, Ren X W, et al. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chem Geol, 2003, 196: 107–129

    Article  Google Scholar 

  41. Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton. Nature, 2004, 432: 892–897

    Article  Google Scholar 

  42. Xu W L, Wang Q H, Wang D Y, et al. Mesozoic adakitic rocks from the Xuzhou-Suzhou area, eastern China: Evidence for partial melting of delaminated lower continental crust. J Asian Earth Sci, 2006, 27: 230–240

    Article  Google Scholar 

  43. Xu W L, Hergt J M, Gao S, et al. Interaction of adakitic melt-peridotite: implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth Planet Sci Lett, 2008, 265: 123–137

    Article  Google Scholar 

  44. Lu F X, Zheng J P, Li W P, et al. The main evolution pattern of Phanerzoic mantle in the eastern China: the ‘Mushroom Cloud’ model (in Chinese). Earth Sci Front, 2000, 7(1): 97–107

    Google Scholar 

  45. Zhou X H. Major transformation of subcontinental lithosphere beneath eastern China in the Cenozoic-Mesozoic: review and prospect (in Chinese). Earth Sci Front, 2006, 13(2): 50–64

    Google Scholar 

  46. Zhou X H, Zhang H F. Highly chemical heterogeneity of subcontinental lithosphere mantle beneath north China and its major transformation (in Chinese). Earth Sci-J China Univ Geosci, 2006, 31(1): 8–13

    Google Scholar 

  47. Tang Y J, Zhang H F, Ying J F, et al. Refertilization of ancient lithospheric mantle beneath the central North China Craton: Evidence from petrology and geochemistry of peridotite xenoliths. Lithos, 2008, 101: 435–452

    Article  Google Scholar 

  48. Xu X S, O’Reilly S Y, Griffin W L, et al. Genesis of young lithospheric mantle in southeastern China: a LAM-ICPMS trace element study. J Petrol, 2000, 41: 111–148

    Article  Google Scholar 

  49. Xu Y G. Thermo-tectonic destruction of the Archean lithospheric keel beneath the Sino-Korean Craton in China: evidence, timing and mechanism. Phys Chem Earth (Part A), 2001, 26: 747–757

    Article  Google Scholar 

  50. Zhang H F, Sun M, Zhou X H, et al. Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol, 2002, 144: 241–253

    Article  Google Scholar 

  51. Zhang H F, Sun M, Zhou X H, et al. Secular evolution of the lithosphere beneath the eastern North China Craton: evidence from Mesozoic basalts and high-Mg andesites. Geochim Cosmochim Acta, 2003, 67: 4373–4387

    Article  Google Scholar 

  52. Zheng J P, Sun M, Zhou M F, et al. Trace elemental and PGE geochemical constraints of Mesozoic and Cenozoic peridotitic xenoliths on lithospheric evolution of the North China Craton. Geochim Cosmochim Acta, 2005, 69: 3401–3418

    Article  Google Scholar 

  53. Gao S, Rudnick R L, Carlson R W, et al. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth Planet Sci Lett, 2002, 198: 307–322

    Article  Google Scholar 

  54. Zhang H F, Ying J F, Xu P, et al. Mantle olivine xenocrysts entrained in Mesozoic basalts from the North China Craton: implication for replacement processes of lithospheric mantle. Chin Sci Bull, 2004, 49: 961–966

    Article  Google Scholar 

  55. Zhang H F. Peridotite-melt interaction: an important mechanism for the compositional transformation of lithospheric mantle (in Chinese). Earth Sci Front, 2006, 13(2): 65–75

    Google Scholar 

  56. Niu Y L. Generation and evolution of basaltic magmas: some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China (in Chinese). Geol J China Univ, 2005, 11(1): 9–46

    Google Scholar 

  57. Zheng J P, Lu F X, Griffin W L, et al. Lithospheric thinning accompanying mantle lateral spreading, erosion and replacement beneath the eastern part of north China: evidence from peridotites (in Chinese). Earth Sci Front, 2006, 13: 76–85

    Google Scholar 

  58. Zheng J P, Griffin W L, O’Reilly S Y, et al. Zircons in mantle xenoliths record the Triassic Yangtze-North China continental collision. Earth Planet Sci Lett, 2006, 247: 130–142

    Article  Google Scholar 

  59. Wu F Y, Ge W C, Sun D Y, et al. Discussions on the lithospheric thinning in eastern China (in Chinese). Earth Sci Front, 2003, 10: 51–61

    Google Scholar 

  60. Xu W L, Wang H Q, Wang D Y, et al. Processes and mechanism of Mesozoic lithospheric thinning in eastern North China Craton: evidence from Mesozoic igneous rocks and deep-seated xenoliths (in Chinese). Earth Sci Front, 2004, 11(3): 309–317

    Google Scholar 

  61. Zheng J P, O’Reilly S Y, Griffin W L, et al. Relict refractory mantle beneath the eastern part of the North China block: its significance in lithosphere evolution. Lithos, 2001, 57: 43–66

    Article  Google Scholar 

  62. Wang D Y, Xu W L, Feng H, et al. Nature of late Mesozoic lithospheric mantle in western Liaoning province: evidences from basalt and the mantle- derived xenoliths (in Chinese). J Jilin Univ (Earth Science edition), 2002, 32(4): 319–324

    Google Scholar 

  63. Yan J, Chen J F, Xie Z, et al. Mantle xenoliths from Late Cretaceous basalt in eastern Shandong province: new constraint on the timing of lithospheric thinning in eastern China. Chin Sci Bull, 2003, 48: 2139–2144

    Article  Google Scholar 

  64. Ying J F, Zhang H F, Kita N, et al. Nature and evolution of Late Cretaceous lithospheric mantle beneath the eastern North China Craton: constraints from petrology and geochemistry of peridotitic xenoliths from Junan, Shandong Province, China. Earth Planet Sci Lett, 2006, 244: 622–638

    Article  Google Scholar 

  65. Yu J H, O’Reilly S Y, Zhang M, et al. Roles of melting and metasomatism in the formation of the lithospheric mantle beneath Leizhou Peninsula, South China. J Petrol, 2005, 47: 355–383

    Article  Google Scholar 

  66. Fan Q C, Liu R X. The High temperature granulite xenolith from basalts in Hannuoba. Chin Sci Bull, 1996, 41(3): 235–238

    Google Scholar 

  67. Zhai M G, Zhu R X, Liu J M, et al. Time range of Mesozoic tectonic regime inversion in eastern North China Block. Sci China Ser D-Earth Sci, 2004, 47(2): 151–159

    Article  Google Scholar 

  68. Zheng J P, Griffin W L, O’Reilly S Y, et al. A refractory mantle protolith in younger continental crust, east-central China: Age and composition of zircon in the Sulu ultrahigh-pressure peridotite. Geology, 2006, 34: 705–708

    Article  Google Scholar 

  69. Yuan X C. Atlas of Geophysics in China. Beijing: Geological Publishing House, 1996. 59–62

    Google Scholar 

  70. Shao J A, He G Q, Zhang F Q. Deep-seated factors controlling the intracontinental orogeny of Yanshan Mountains (in Chinese). Earth Sci Front, 2005, 12(3): 137–148

    Google Scholar 

  71. Kelemen P B, Hart S R, Bernstin S. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet Sci Lett, 1998, 164: 387–406

    Article  Google Scholar 

  72. Klemme S, Laan S R, Foley S F, et al. Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions. Earth Planet Sci Lett, 1995, 133: 439–448

    Article  Google Scholar 

  73. Boyd F R. Composition and distinction between oceanic and cratonic lithosphere. Earth Planet Sci Lett, 1989, 96: 15–26

    Article  Google Scholar 

  74. Zhang H F. Transformation of lithospheric mantle through peridotite-melt reaction: a case of Sino-Korean craton. Earth Planet Sci Lett, 2005, 237: 768–780

    Article  Google Scholar 

  75. Zheng J P, Griffin W L, O’Reilly S Y, et al. Continental collision and accretion recorded in the deep lithosphere of central China. Earth Planet Sci Lett, 2008, 269: 496–506

    Article  Google Scholar 

  76. Xu W L, Gao S, Wang Q H, et al. Mesozoic crustal thickening of the eastern North China craton: Evidence from eclogite xenoliths and petrologic implications. Geology, 2006, 34: 721–724

    Article  Google Scholar 

  77. Xu Y G, Lin C Y, Menzies M A. Mineral chemistry of minerals in spinel peridotite xenoliths from Wangqing of Jilin Province: thermal history and metasomatism of upper mantle. J Geochem, 1996, 125: 481–493

    Google Scholar 

  78. Rudnick R L, Gao S, Ling W, et al. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton. Lithos, 2004, 77: 609–637

    Article  Google Scholar 

  79. Zheng J P, Sun M, Lu F X, et al. Mesozoic lower crustal xenoliths and their significance in lithospheric evolution beneath the Sino-Korean Craton. Tectonophysics, 2003, 361: 37–60

    Article  Google Scholar 

  80. Xu W L, Zheng C Q, W D Y. Discovery and significance of mantle and lower-crust xenoliths in Mesozoic trachytic basalts from the western of Liaoning Province (in Chinese). Geol Rev, 1999, 45(suppl): 444–449

    Google Scholar 

  81. Zhang H F, Zheng J P. Geochemical characteristics and petrogenesis of Mesozoic basalts from the North China Craton: a case study in Fuxin, Liaoning Province. Chin Sci Bull, 2003, 48(9): 924–930

    Article  Google Scholar 

  82. Zheng J P, Zhang R S, Yu C M, et al. An in situ zircon Hf isotopic, U-Pb age and trace element study of monzonite xenoliths from Pingquan and Fuxin basalts: tracking the thermal events of 169 Ma and 107 Ma in Yanliao area. Sci China Ser D-Earth Sci, 2004, 47(suppl II): 39–52

    Article  Google Scholar 

  83. Jin L Y. Xenoliths in Cenozoic basalts from Tanlu fault (in Chinese). J Changchun Coll Geol, 1985, 3: 21–32

    Google Scholar 

  84. Liu R X. The Age and Geochemistry of Cenozoic Volcanic Rock in China (in Chinese). Beijing: Seismological Press, 1990. 1–93

    Google Scholar 

  85. Liu F L, Xu Z Q, Katayama I, et al. Mineral inclusions in zircons of para- and orthogneiss from pre-pilot drillhole CCSD-PP1, Chinese Continental Scientific Drilling Project. Lithos, 2001, 59: 199–215

    Article  Google Scholar 

  86. Li T F, Yang J S, Zhang R Y. Peridotite from the pre-pilot hole (PP1) of the Chinese continental scientific drilling project and its bearing on depleted and metasomatic upper mantle (in Chinese). Acta Geol Sin, 2003, 77: 492–509

    Google Scholar 

  87. Zheng Y F, Yang J J, Gong B, et al. Partial equilibrium of radiogenic and stable systems in garnet peridotite during ultrahigh-pressure metamorphism. Amer Mineral, 2003, 88: 1633–1643

    Article  Google Scholar 

  88. Zhang R Y, Yang J S, Wooden J L, et al. U-Pb SHRIMP geochro-nology of zircon in garnet peridotite from the Sulu UHP terrane, China: Implications for mantle metasomatism and subduction-zone UHP metamorphism. Earth Planet Sci Lett, 2005, 237: 729–743

    Article  Google Scholar 

  89. Zheng J P, Sun M, Griffin W L, et al. Age and geochemistry of contrasting peridotite types in the Dabie UHP belt, eastern China: Petrogenetic and geodynamic implications. Chem Geol, 2008, 247: 282–304

    Article  Google Scholar 

  90. Zhang H F, Goldstein S L, Zhou X H, et al. Evolution of subcontinental lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contrib Miner Petrol, 2008, 155: 271–293

    Article  Google Scholar 

  91. Xu Y G, Ross J V, Mercier J C. The upper mantle beneath the continental rift of Tanlu, eastern China: Evidence for the intra-lithospheric shear zones. Tectonophysics, 1993, 225: 337–360

    Article  Google Scholar 

  92. Zheng J P, Lu F X, Cheng Z M, et al. Characteristics and genesis of pyroxenite xenolith in kimberlite (in Chinese). Earth Sci-J Chin Univ Geosci, 1998, 23(1): 49–54

    Google Scholar 

  93. Zheng J P, Lu F X. Paleomantle fluid and its meaning in the evolution of continental craton mantle: Taking the North China platform for example (in Chinese). Earth Sci Front, 1996, 3: 187–194

    Google Scholar 

  94. Yang X Z, Xia Q K, Deloule E, et al. Water in minerals of the continental lithospheric mantle and overlying lower crust: a comparative study of peridotite and granulite xenoliths from the North China Craton. Chem Geol, 2008, 256: 33–45

    Article  Google Scholar 

  95. Zhang R Y, Liou J G, Yang J S, et al. Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central China. J Metamorph Geol, 2000, 18: 149–166

    Article  Google Scholar 

  96. Zhang R Y, Liou J G, Cong B L. Talc-, magnesite- and Ti-clinohumite-bearing ultrahigh-pressure meta-mafic and ultramafic complex in the Dabie Mountains, China. J Petrol, 1995, 36: 1011–1037

    Article  Google Scholar 

  97. Brueckner H K. Sinking intrusion model for the emplacement of garnet-bearing peridotites into continent collision orogens. Geology, 1998, 26: 631–634

    Article  Google Scholar 

  98. Ye K, Song Y R, Chen Y, et al. Multistage metamorphism of orogenic garnet-lherzolite from Zhimafang, Sulu UHP terrane, E. China: Implications for mantle wedge convection during progressive oceanic and continental subduction. doi:10.1016/j.lithos.2008.08.005

  99. Xiao Y L, Hoefs J, Kerkhof A M, et al. Fluid history of UHP metamorphism in Dabie Shan, China: a fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling. Contrib Miner Petrol, 2000, 139: 1–16

    Article  Google Scholar 

  100. Xie Z, Zheng Y F, Jahn B M, et al. Sm-Nd and Rb-Sr dating of pyroxene-garnetite from north Dabie in east-central China: problem of isotope disequilibrium due to retrograde metamorphism. Chem Geol, 2004, 206: 137–158

    Article  Google Scholar 

  101. Jin Y B, Zhi X C, Meng Q. Formation age of the Raobazhai ultramafic rocks, northern Dabie: Re-Os isotopic dating. Chin Sci Bull, 2003, 48: 2560–2565

    Article  Google Scholar 

  102. Zheng J P, Zhang R Y, Griffin W L, et al. Heterogeneous and metasomatized mantle recorded by trace elements in minerals of the Donghai garnet peridotites, Sulu UHP terrane, China. Chem Geol, 2005, 221: 243–259

    Article  Google Scholar 

  103. Yuan H L, Gao S, Rudnick R L, et al. Re-Os evidence for the age and origin of peridotites from the Dabie-Sulu ultrahigh pressure metamorphic belt, China. Chem Geol, 2007, 236: 323–338

    Article  Google Scholar 

  104. Zhang R Y, Pan Y M, Yang Y H, et al. Chemical composition and ultrahigh-P metamorphism of garnet peridotites from the Sulu UHP terrane, China: Investigation of major, trace elements and Hf isotopes of minerals. Chem Geol, 2008, 255: 250–264

    Article  Google Scholar 

  105. Zhang H F, Sun M, Lu F X, et al. Geochemical significance of a garnet lherzolite from the Dahongshan kimberlite, Yangtze Craton, southern China. Geochem J, 2001, 35: 315–331

    Article  Google Scholar 

  106. Xu Y G, Blusztajn J, Ma J L, et al. Late Archean to Early Proterozoic lithospheric mantle beneath the western North China craton: Sr-Nd-Os isotopes of peridotite xenoliths from Yangyuan and Fansi. Lithos, 2008, 102: 25–42

    Article  Google Scholar 

  107. Tang Y J, Zhang H F, Ying J F. High-Mg olivine xenocrysts entrained in Cenozoic basalts in central Taihang Montains: relicts of old lithospheric mantle (in Chinese). Acta Petrol Sin, 2004, 20(5): 1243–1252

    Google Scholar 

  108. Chen X, Zheng J P. Mineral chemistry of peridotite xenoliths in Yangyuan Cenozoic basalts: significance for lithospheric mantle evolution beneath the North China Craton (in Chinese). Earth Sci-J Chin Univ Geosci, 2009, 34(1): 203–219

    Google Scholar 

  109. Chen S H, O’Reilly S Y, Zhou X H, et al. Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean Craton, China: evidence from xenoliths. Lithos, 2001, 56: 267–301

    Article  Google Scholar 

  110. Yu C M, Zheng J P, Griffin W L. LAM-ICPMS analysis on clinopyroxenes of peridotite xenoliths from Hannuoba and its significance on lithospheric mantle evolution (in Chinese). Earth Sci-J China Univ Geosci 2006, 31(1): 93–100

    Google Scholar 

  111. E M L, Zhao D S. The Cenozoic Basalts and Deep-Seated Xenoliths, East China (in Chinese). Beijing: Science Press, 1988. 1–490

    Google Scholar 

  112. Xu Y G, Lin C Y, Menzies M A, et al. Thermal history and metasomatic processes in the upper mantle beneath Wangqing, NE China: Implications from mineral chemistry of spinel-peridotite xenoliths (in Chinese). Geochemica, 1996, 25(5): 481–493

    Google Scholar 

  113. Xu Y G, Huang X L, Thirlwall M F, et al. ’Reactive’ harzburgite xenoliths from Huinan, Jilin province and their implications for deep dynamic process (in Chinese). Acta Petrol Sin, 2003, 19(1): 1–26

    Google Scholar 

  114. Meen J K. Mantle metasomatism and carbonates: an experimental study of a complex relationship. Geol Soc Am Spec Pap, 1987, 215: 91–100

    Google Scholar 

  115. Yaxley G M, Green D H, Kamenetsky V. Carbonatite metasomatism in the southeastern Australian lithosphere. J Petrol, 1998, 39: 1917–1930

    Article  Google Scholar 

  116. Coltori M, Bonadiman C, Hinton R W, et al. Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. J Petrol, 1999, 40: 133–165

    Article  Google Scholar 

  117. Zhang Z H, Zheng J P, Ma H W. Trace elemental compositions of peridotitec diopsides and the record of partial melting and metasomatism in lithosphere beneath Wangqing and Huinan areas, Jilin Province (in Chinese). Geol Sci Tech Inf, 2007, 25(6): 9–16

    Google Scholar 

  118. Xia Q X, Zhi X C, Meng Q, et al. The trace element and Re-Os isotopic geochemistry of mantle-derived peridotite xenoliths from Hannuoba: nature and age of SCLM beneath the area (in Chinese). Acta Petrol Sin, 2004, 20(5): 1215–1224

    Google Scholar 

  119. Yu C M, Zheng J P, Griffin W L. In situ Re-Os isotope ages of sulfides in Hannuoba peridotitic xenoliths: Significance for the frequently-occurring mantle events beneath the North China Block. Chin Sci Bull, 2007, 52: 2847–2853

    Article  Google Scholar 

  120. Choi S H, Mukasa S B, Zhou X H, et al. Mantle dynamics beneath East Asia constrained by Sr, Nd, Pb and Hf isotopic systematics of ultramafic xenoliths and their host basalts from Hannuoba, North China. Chem Geol, 2008, 248: 40–61

    Article  Google Scholar 

  121. Zhang H F, Ying J F, Tang Y J, et al. Heterogeneity of Mesozoic and Cenozoic lithospheric mantle beneath the eastern north China craton: evidence from olivine compositional mapping (in Chinese). Acta Petrol Sin, 2006, 22(9): 2279–2288

    Google Scholar 

  122. Zhang HF, Zhou X H, Fan W M, et al. Nature, composition, enrichment processes and its mechanism of the Mesozoic lithospheric mantle beneath the southeastern north China craton (in Chinese). Acta Petrol Sin, 2005, 21(4): 1271–1280

    Google Scholar 

  123. Zhang H F, Nakamura, Kobayashi K, et al. Transformation of subcontinental lithospheric mantle through peridotite-melt reaction: evidence from a highly fertile mantle xenolith from the North China Craton. Int Geol Rev, 2007, 49(7): 658–679

    Article  Google Scholar 

  124. Tang Y J, Zhang H F, Nakamura E, et al. Lithium isotopic sys-tematics of peridotite xenoliths from Hannuoba, North China Craton: Implications for melt-rock interaction in the considerably thinned lithospheric mantle. Geochim Cosmochim Acta, 2007, 71: 4327–4341

    Article  Google Scholar 

  125. Liu Y S, Gao S, Lee C T A, et al. Melt-peridotite interactions: Links between garnet pyroxenite and high-Mg# signature of continental crust. Earth Planet Sci Lett, 2005, 234: 39–57

    Article  Google Scholar 

  126. Liu Y S, Gao S, Kelemen P B, et al. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochim Cosmochim Acta, 2008, 72: 2349–2376

    Article  Google Scholar 

  127. Ye K, Cong B L, Ye D N. The possible subduction of continental materials to depths greater than 200 km. Nature, 2000, 407: 334–336

    Article  Google Scholar 

  128. Brey G, Kohler T. Geothermobarometry in four-phase lherzolites II: New thermobarometers and practical assessment of existing thermobarometers. J Petrol, 1990, 31: 1353–1378

    Article  Google Scholar 

  129. Witt-Eickschen G, Seck H A. Solubility of Ca and Al in orthopyroxene from spinel peridotite: An improved version of an empirical geothermometer. Contrib Mineral Petrol, 1991, 106: 431–439

    Article  Google Scholar 

  130. Zheng Y F, Chen R X, Zhao Z F. Chemical geodynamics of continental subduction-zone metamorphism: Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics, doi:10.1016/j.tecto.2008.09.014

  131. Xu Y G. Using basalt geochemistry to constrain Mesozoic-Cenozoic evolution of the lithosphere beneath North China Craton (in Chinese). Earth Sci Front, 2006, 13(2): 93–104

    Google Scholar 

  132. Zhang C H. A review on the continental intraplate deformation and its dynamics (in Chinese). Earth Sci Front, 2008, 15(3): 140–149

    Google Scholar 

  133. Ren J Y, Tamaki K, Li S T, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent areas. Tectonophysics, 2002, 344: 175–205

    Article  Google Scholar 

  134. Li Z, Dong R G, Zheng J P. Mesozoic volcanic-sedimentary configurations in north and south margins of the eastern North China Craton: implications for tectonic transition mechanism (in Chinese). J Palaeo Geogr, 2007, 9(3): 227–242

    Google Scholar 

  135. Zheng J P, Yu C M, Su Y P, et al. Physical and chemical process of the destruction of the North China Craton: Evidences from peridotite (in Chinese). Bull Miner Petrol Geochem, 2008, 27(sep): 31

    Google Scholar 

  136. Zhang G W, Zhang B R, Yuan X C, et al. Qinling Orogenic Belt and Continental Dynamics (in Chinese). Beijing: Science Press, 2001. 1–855

    Google Scholar 

  137. Xu Z Q, Lu Y L, Tang Y Q. Formation, Deformation, Evolution and Plate Dynamics of the Composite Eastern Qinling Chain (in Chinese). Beijing: China Environmental Science Press, 1988. 1–193

    Google Scholar 

  138. Li S G, Xiao T L, Liou D L, et al. Collision of the North China and Yangtze Blocks and formation of coesite-bearing eclogites: timing and processes. Chem Geol, 1993, 109: 89–111

    Article  Google Scholar 

  139. Liou J G, Hacker B R, Zhang R Y. Into the forbidden zone. Science, 2000, 287: 1215–1216

    Article  Google Scholar 

  140. Yuan X C. Depth Structure and Tectonic Evolution of Qinling Orogenic Belt. In: Ye L J, ed. A Selection of Papers Presented at the Conference on Qinling Orogenic Belt. Xi’an: Northwest University Press, 1991. 174–184

    Google Scholar 

  141. Zheng Y F, Fu B, Gong B, et al. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth Sci Rev, 2003, 62: 105–161

    Article  Google Scholar 

  142. Yang J S, Xu Z Q, Pei X Z, et al. Discovery of Diamond in North Qinling: Evidence for a giant UHPM belt across central China and recognition of Paleozoic and Mesozoic dual deep subduction between North China and Yangtze Plates (in Chinese). Acta Geol Sin, 2002, 76(4): 484–495

    Google Scholar 

  143. Yang W C. Layered mantle reflectors in the Dabie-Sulu areas and their interpretation. Chin J Geophys, 2003, 46: 191–196

    Google Scholar 

  144. Wang Y J, Fan W M, Peng T P, et al. Nature of the Mesozoic lithospheric mantle and tectonic decoupling beneath the Dabie Orogen, Central China: Evidence from 40Ar/39Ar geochronology, elemental and Sr-Nd-Pb isotopic compositions of early Cretaceous mafic igneous rocks. Chem Geol, 2005, 220: 165–189

    Article  Google Scholar 

  145. Wang C Y, Zeng R S, Mooney W D, et al. A crustal model of the ultrahigh-pressure Dabie Shan orogenic belt, China, derived from deep seismic refraction profiling. J Geophys Res B: Solid Earth, 2000, 105: 10857–10869

    Article  Google Scholar 

  146. Li S G, Huang F, Li H. Post collision lithosphere detachment in Dabie-Sulu orogenic belt. Chin Sci Bull, 2001, 47(3): 259–263

    Article  Google Scholar 

  147. Xu P F, Sun R M, Liu F T, et al. Seismic tomography showing subduction and slab breakoff of the Yangtze blocks beneath the Dabie-Sulu orogenic belt. Chin Sci Bull, 2000, 45(1): 70–74

    Article  Google Scholar 

  148. Larson R L. Latest pulse of Earth: Evidence for a mid-Cretaceous superplume. Geology, 1991, 19: 547–550

    Article  Google Scholar 

  149. Frey F A, Coffin M F, Wallace P J, et al. Origin and evolution of a submarine large igneous province: the Kerguelen Plateau and Broken Ridge, southern Indian Ocean. Earth Planet Sci Lett, 2000, 176: 73–89

    Article  Google Scholar 

  150. Li Z N, Issues of Volcanic Rock and Volcanism with Environment. In: Ouyang Z Y, ed. Retrospect and Prospect of Mineralogy, Petrology and Geochemistry at the Turn of Century. Beijing: Atomic Energy Press, 1998. 64–67

    Google Scholar 

  151. Zhu R X, Shao J A, Pan, Y X, et al. Paleomagnetic data from early Cretaceous volcanic rocks of west Liaoning: Evidence for intracontinental rotation. Chin Sci Bull, 2002, 47(21): 1832–1837

    Article  Google Scholar 

  152. Wilde S A, Zhou X H, Nemchin A A, et al. Mesozoic crust-mantle interaction beneath the North China craton: A consequence of the dispersal of Gondwanaland and accretion of Asia. Geology, 2003, 31: 817–820

    Article  Google Scholar 

  153. Stein M, Hofmann A W. Mantle plumes and episodic crustal growth. Nature, 2002, 372: 63–68

    Article  Google Scholar 

  154. Zhao D P. Seismic structure and origin of hotspots and mantle plumes. Earth Planet Sci Lett, 2001, 192: 251–265

    Article  Google Scholar 

  155. Sleep N H. Evolution of the continental lithosphere. Annu Rev Earth Planet Sci, 2005, 33: 369–393

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianPing Zheng.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 90714002, 40673002 and 40821061)

About this article

Cite this article

Zheng, J. Comparison of mantle-derived matierals from different spatiotemporal settings: Implications for destructive and accretional processes of the North China Craton. Chin. Sci. Bull. 54, 3397–3416 (2009). https://doi.org/10.1007/s11434-009-0308-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0308-y

Keywords

Navigation