Skip to main content
Log in

Methoxy poly(ethylene glycol)-b-poly(ethyl cyanoacrylate) copolymer nanoparticles as delivery vehicles for dexamethasone

  • Special Topic/Articles/Biomedical Materials
  • Published:
Chinese Science Bulletin

Abstract

Methoxy poly(ethylene oxide)-b-poly(ethyl cyanoacrylate) (mPEG-b-PECA), amphiphilic block copolymer, was synthesized via oxyanion-initiated polymerization with a sodium alcoholate-terminated monomethoxy poly(ethylene glycol) as the macroinitiator. mPEG-b-PECA was characterized by GPC, 1H-NMR and FTIR. The results indicate that the structure of mPEG-b-PECA is well controlled with narrow molecular weight distribution. The dexamethasone (DXM)-loaded mPEG-b-PECA nanoparticles (NPs) were prepared by the nanoprecipitation technique and characterized by LPSA, 1H-NMR and TEM. The DXM-loaded mPEG-b-PECA NPs are of spherical shape with the size of less than 100 nm. The drug-loaded amount (DL) and encapsulation efficiency (EE) of DXM-loaded NPs were investigated by HPLC. The results show that DXM can be effectively incorporated into mPEG-b-PECA NPs, which provides a potential delivery system for DXM and other hydrophobic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Auguste D T, Armes S P, Brzezinska K R, et al. pH triggered release of protective poly(ethylene glycol)-b-polycation copolymers from liposomes. Biomaterials, 2006, 27: 2599–2608

    Article  Google Scholar 

  2. Li X, Wu Q, Lu M, et al. Novel hepatoma-targeting micelles based on chemoenzymatic synthesis and self-assembly of galactose-functionalized ribavirin-containing amphiphilic random copolymer. J Polym Sci Part A: Polym Chem, 2008, 46: 2734–2744

    Article  Google Scholar 

  3. Deng L D, Li A G, Yao C M, et al. Methoxy poly(ethylene glycol)-b-poly(L-lactic acid) copolymer nanoparticles as delivery vehicles for paclitaxel. J Appl Polym Sci, 2005, 98: 2116–2122

    Article  Google Scholar 

  4. Achilleos D S, Georgiou T K, Patrickios C S. Amphiphilic model conetworks based on cross-Linked star copolymers of benzyl methacrylate and 2-(dimethylamino)ethyl methacrylate: synthesis, characterization, and DNA adsorption studies. Biomacromolecules, 2006, 7: 3396–3405

    Article  Google Scholar 

  5. Jiang X, Vogel E B, Smith III M R, et al. Amphiphilic PEG/alkylgrafted comb polylactides. J Polym Sci Part A: Polym Chem, 2007, 45: 5227–5236

    Article  Google Scholar 

  6. Stefani M, Coudane J, Vert M. In vitro ageing and degradation of PEG-PLA diblock copolymer-based nanoparticles. Polym Degrad Stab, 2006, 91: 2554–2559

    Article  Google Scholar 

  7. Zhang Y, Gu W, Xu H, et al Facile fabrication of hybrid nanoparticles surface grafted with multi-responsive polymer brushes via block copolymer micellization and self-catalyzed core gelation. J Polym Sci Part A: Polym Chem, 2008, 46: 2379–2389

    Article  Google Scholar 

  8. Zou T, Li S L, Zhang X Z, et al. Synthesis and characterization of a biodegradable amphiphilic copolymer based on branched poly (-caprolactone) and poly(ethylene glycol). J Polym Sci Part A: Polym Chem, 2007, 45: 5256–5265

    Article  Google Scholar 

  9. Li Y, Ogris M, Wagner E, et al. Nanoparticles bearing polyethyleneglycol-coupled transferrin as gene carriers: preparation and in vitro evaluation. Int J Pharm, 2003, 259: 93–101

    Article  Google Scholar 

  10. Fresta M, Fontana G, Bucolo C, et al. Ocular tolerability and in vivo bioavailability of poly(ethylene glycol) (PEG)-coated polyethyl-2-cyanoacrylate nanosphere-encapsulated acyclovir. J Pharm Sci, 2001, 90: 288–297

    Article  Google Scholar 

  11. Stella B, Arpicco S, Peracchia M T, et al. Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci, 2000, 89: 1452–1464

    Article  Google Scholar 

  12. Peracchia M T, Vauthier C, Puisieux F, et al. Development of sterically stabilized poly(isobutyl 2-cyanoacrylate) nanoparticles by chemical coupling of poly(ethylene glycol). J Biomed Mater Res, 1997, 34: 317–326

    Article  Google Scholar 

  13. Deng L D, Yao C M, Li A G, et al. Preparation and characterization of poly{[alpha-maleic anhydride-omega-methoxypoly-poly(ethylene glycol)]-co-(ethyl cyanoacrylate)} copolymer nanoparticles. Polym Int, 2005, 54: 1007–1013

    Article  Google Scholar 

  14. Calvo P, Gouritin B, Brigger I, et al. PEGylated polycyanoacrylate nanoparticles as vector for drug delivery in prion diseases. J Neurosci Meth, 2001, 111: 151–155

    Article  Google Scholar 

  15. Penczek S, Cypryk M, Duda A, et al. Living ring-opening polymerizations of heterocyclic monomers. Prog Polym Sci, 2007, 32: 247–282

    Article  Google Scholar 

  16. Baskaran D, Muller A. H. E. Anionic vinyl polymerization-50 years after Michael Szwarc. Prog Polym Sci, 2007, 32: 173–219

    Article  Google Scholar 

  17. Zhou Y H, Bei F L, Ji H Y, et al. Property and quantum chemical investigation of poly(ethyl-á-cyanoacrylate). J Mol Struct, 2005, 737: 117–123

    Article  Google Scholar 

  18. Choi Y K, Bae Y H, Kim S W. Block Copolymer nanoparticles of ethylene oxide and isobutyl cyanoacrylate. Macromolecules, 1995, 28: 8419–8421

    Article  Google Scholar 

  19. Nagasaki Y, Okada T, Scholz C, et al. The reactive polymeric micelle based on an aldehyde-ended poly(ethylene glycol)/poly(lactide) block copolymer. Macromolecules, 1998, 31: 1473–1479

    Article  Google Scholar 

  20. de Paz Banez M V, Robinson K L, Vamvakaki M, et al. Synthesis of novel cationic polymeric surfactants. Polymer, 2000, 41: 8501–8511

    Article  Google Scholar 

  21. Q. Zhao, Ni P H Synthesis of well-defined and near narrow-distribution diblock copolymers comprising PMMA and PDMAEMA via oxyanion-initiated polymerization. Polymer, 2005, 46: 3141–3148

    Article  Google Scholar 

  22. Govender T, Stolnik S, Garnett M C, et al. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release, 1999, 57: 171–185

    Article  Google Scholar 

  23. Dong Y C, Feng S S. poly(ethylene glycol)-poly(lactide) (MPEGPLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials, 2004, 25: 2843–2849

    Article  Google Scholar 

  24. Cheng J J, Teply B, Jeong S, et al. Magnetically responsive polymeric microparticles for oral delivery of protein drugs. Pharm Res, 2006, 23: 557–564

    Article  Google Scholar 

  25. Butun V, Wang X S, de PazBanez M V, et al. Synthesis of shell cross-linked micelles at high Solids in aqueous media. Macromolecules, 2000, 33: 1–3

    Article  Google Scholar 

  26. Xiong X Y, Li Y P, Li Z L,et al. Vesicles from Pluronic/poly(lactic acid) block copolymers as new carriers for oral insulin delivery. J Control Release, 2007, 120: 11–17

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AnJie Dong.

Additional information

Supported by the Key Project of Tianjin Municipal Natural Science Foundation (Grant No. 08JCZDJC17200), Tianjin Municipal Natural Science Foundation (Grant No. 08JCYBJC01800), and National Natural Science Foundation of China (Grant No. 30672554)

About this article

Cite this article

Zhai, Y., Deng, L., Lin, X. et al. Methoxy poly(ethylene glycol)-b-poly(ethyl cyanoacrylate) copolymer nanoparticles as delivery vehicles for dexamethasone. Chin. Sci. Bull. 54, 2918–2924 (2009). https://doi.org/10.1007/s11434-009-0246-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0246-8

Keywords

Navigation