Control of the morphology of micro/nanostructures of polycarbonate via electrospinning

Abstract

Many of the applications proposed for bioassays, scaffolds for tissue engineering, filtrations, and supports for catalysts require polymeric membranes with large specific surface areas. Polycarbonate (PC) is a possible candidate for these applications because of its excellent mechanical performance and good biocompatibility. Electrospinning is a simple and effective method for large-scale fabrication of micro-/nano- fibrous membranes with large specific surface areas. How to control the morphology of electrospun PC fibers, however, has not been systematically investigated. We describe the controllable fabrication of continuous and uniform PC fibers. We electrospin PC/chloroform solutions doped with different types of surfactants including anionic, zwitterionic, nonionic and cationic surfactants. Only cationic surfactants can lead to the successful fabrication of uniform PC fibers. After the analysis of the correlation between solution properties such as viscosity, surface tension, and conductivity and the morphology of electrospun fibers, we conclude that the addition of cationic surfactants such as cetane trimethyl ammonium bromide (CTAB) that leads to a decrease in viscosity is the main factor responsible for the formation of PC fibers. The demonstration of the fabrication of uniform PC fibers will lend experience to processing other polymers into fibers via electrospinning.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Yang D Y, Lu B, Zhao Y, et al. Fabrication of aligned fibrous arrays by magnetic electrospinning. Adv Mater, 2007, 19: 3702–3705

    Article  Google Scholar 

  2. 2

    Yang D Y, Niu X, Liu Y Y, et al. Electrospun nanofibrous membranes: A novel solid substrate for microfluidic immunoassays for HIV. Adv Mater, 2008, 20: 4770–4775

    Article  Google Scholar 

  3. 3

    Jiang L, Zhao Y, Zhai J. A lotus-leaf-like superhydrophobic surface: A porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew Chem Int Ed, 2004, 43: 4338–4341

    Article  Google Scholar 

  4. 4

    Li Z Y, Zhang H N, Zheng W, et al. Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers. J Am Chem Soc, 2008, 130: 5036–5037

    Article  Google Scholar 

  5. 5

    Nie H R, He A H, Zheng J F, et al. Effects of chain conformation and entanglement on the electrospinning of pure alginate. Biomacromolecules, 2008, 9: 1362–1365

    Article  Google Scholar 

  6. 6

    Zhang C X, Yuan X Y, Wu L L, et al. Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polym J, 2005, 41: 423–432

    Article  Google Scholar 

  7. 7

    Ye P, Xu Z K, Wu J, et al. Nanofibrous membranes containing reactive groups: Electrospinning from poly(acrylonitrile-co-maleic acid) for lipase immobilization. Macromolecules, 2006, 39: 1041–1045

    Article  Google Scholar 

  8. 8

    Hao R, Yuan J Y, Peng Q. Fabrication and sensing behavior of Cr2O3 nanofibers via in situ gelation and electrospinning. Chem Lett, 2006, 35: 1248–1249

    Article  Google Scholar 

  9. 9

    Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers. J Electrost, 1995, 35: 151–160

    Article  Google Scholar 

  10. 10

    Li D, Xia Y N. Electrospinning of nanofibers: Reinventing the wheel? Adv Mater, 2004, 16: 1151–1170

    Article  Google Scholar 

  11. 11

    Greiner A, Wendorff J H. Electrospinning: A fascinating method for the preparation of ultrathin fibres. Angew Chem Int Ed, 2007, 46: 5670–5703

    Article  Google Scholar 

  12. 12

    McKee M G, Layman J M, Cashion M P, et al. Phospholipid nonwoven electrospun membranes. Science, 2006, 311: 353–355

    Article  Google Scholar 

  13. 13

    Shenoy S L, Bates W D, Frisch H L, et al. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer-polymer interaction limit. Polymer, 2005, 46: 3372–3384

    Article  Google Scholar 

  14. 14

    Ohkawa K, Cha D I, Kim H, et al. Electrospinning of chitosan. Macromol Rapid Comm, 2004, 25: 1600–1605

    Article  Google Scholar 

  15. 15

    Ohkawa K, Minato K I, Kumagai G, et al. Chitosan nanofiber. Biomacromolecules, 2006, 7: 3291–3294

    Article  Google Scholar 

  16. 16

    Bhattarai N, Li Z S, Edmondson D, et al. Alginate-based nanofibrous scaffolds: Structural, mechanical, and biological properties. Adv Mater, 2006, 18: 1463–1467

    Article  Google Scholar 

  17. 17

    Sui X F, Yuan J Y, Yuan W Z, et al. Preparation of cellulose nanofibers/nanoparticles via electrospray. Chem Lett, 2008, 37: 114–115

    Article  Google Scholar 

  18. 18

    Xu S S, Zhang J, He A H, et al. Electrospinning of native cellulose from nonvolatile solvent system. Polymer, 2008, 49: 2911–2917

    Article  Google Scholar 

  19. 19

    Jiang X Y, Ng J M K, Stroock A D, et al. A miniaturized, parallel, serially diluted immunoassay for analyzing multiple antigens. J Am Chem Soc, 2003, 125: 5294–5295

    Article  Google Scholar 

  20. 20

    Lee S J, Choi J S, Park K S, et al. Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes. Biomaterials, 2004, 25: 4699–4707

    Article  Google Scholar 

  21. 21

    Brun J F, Criqui C, Orsetti A. Ultrasonic cleaning of polycarbonate sieves for filtration of whole-blood from health and diabetic subject. Clin Hemorheol, 1988, 8: 957–960

    Google Scholar 

  22. 22

    Yu A M, Liang Z J, Caruso F. Enzyme multilayer-modified porous membranes as biocatalysts. Chem Mater, 2005, 17: 171–175

    Article  Google Scholar 

  23. 23

    Shawon J, Sung C M. Electrospinning of polycarbonate nanofibers with solvent mixtures THF and DMF. J Mater Sci, 2004, 39: 4605–4613

    Article  Google Scholar 

  24. 24

    Kim G M, Michler G H, Potschke P. Deformation processes of ultrahigh porous multiwalled carbon nanotubes/polycarbonate composite fibers prepared by electrospinning. Polymer, 2005, 46: 7346–7351

    Article  Google Scholar 

  25. 25

    Saeed K, Park S Y, Lee H J, et al. Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite. Polymer, 2006, 47: 8019–8025

    Article  Google Scholar 

  26. 26

    Kim S J, Nam Y S, Rhee D M, et al. Preparation and characterization of antimicrobial polycarbonate nanofibrous membrane. Eur Polym J, 2007, 43: 3146–3152

    Article  Google Scholar 

  27. 27

    Arayanarakul K, Choktaweesap N, Aht-ong D, et al. Effects of poly(ethylene glycol), inorganic salt, sodium dodecyl sulfate, and solvent system on electrospinning of poly(ethylene oxide). Macromol Mater Eng, 2006, 291: 581–591

    Article  Google Scholar 

  28. 28

    Qin X H, Yang E L, Li N, et al. Effect of different salts on electrospinning of polyacrylonitrile (PAN) polymer solution. J App Polym Sci, 2007, 103: 3865–3870

    Article  Google Scholar 

  29. 29

    Zhou Y, Wang S X, Zhang K, et al. Visual detection of copper(II) by azide- and alkyne-functionalized gold nanoparticles using click chemistry. Angew Chem Int Ed, 2008, 47: 7454–7456

    Article  Google Scholar 

  30. 30

    Li Y, Yuan B, Ji H, et al. A method for patterning multiple types of cells by using electrochemical desorption of self-assembled monolayers within microfluidic channels. Angew Chem Int Ed, 2007, 46: 1094–1096

    Article  Google Scholar 

  31. 31

    Sun K, Wang Z X, Jiang X Y. Modular microfluidics for gradient generation. Lab Chip, 2008, 8: 1536–1543

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to XingYu Jiang.

Additional information

Supported by the Innovation Program of Chinese Academy of Sciences, National Natural Science Foundation of China (Grant Nos. 20605006 & 20890020) and Ministry of Science and Technology of China (Grant Nos. 2006CB705600, 2006AA03Z323 and 2009CB930001)

About this article

Cite this article

Yang, D., Wang, Y., Zhang, D. et al. Control of the morphology of micro/nanostructures of polycarbonate via electrospinning. Chin. Sci. Bull. 54, 2911–2917 (2009). https://doi.org/10.1007/s11434-009-0241-0

Download citation

Keywords

  • electrospinning
  • polycarbonate
  • nanofibers
  • morphology control
  • surfactants