Chinese Science Bulletin

, Volume 54, Issue 17, pp 2911–2917 | Cite as

Control of the morphology of micro/nanostructures of polycarbonate via electrospinning

  • DaYong Yang
  • Yang Wang
  • DongZhou Zhang
  • YingYi Liu
  • XingYu JiangEmail author
Special Topic/Articles/Biomedical Materials


Many of the applications proposed for bioassays, scaffolds for tissue engineering, filtrations, and supports for catalysts require polymeric membranes with large specific surface areas. Polycarbonate (PC) is a possible candidate for these applications because of its excellent mechanical performance and good biocompatibility. Electrospinning is a simple and effective method for large-scale fabrication of micro-/nano- fibrous membranes with large specific surface areas. How to control the morphology of electrospun PC fibers, however, has not been systematically investigated. We describe the controllable fabrication of continuous and uniform PC fibers. We electrospin PC/chloroform solutions doped with different types of surfactants including anionic, zwitterionic, nonionic and cationic surfactants. Only cationic surfactants can lead to the successful fabrication of uniform PC fibers. After the analysis of the correlation between solution properties such as viscosity, surface tension, and conductivity and the morphology of electrospun fibers, we conclude that the addition of cationic surfactants such as cetane trimethyl ammonium bromide (CTAB) that leads to a decrease in viscosity is the main factor responsible for the formation of PC fibers. The demonstration of the fabrication of uniform PC fibers will lend experience to processing other polymers into fibers via electrospinning.


electrospinning polycarbonate nanofibers morphology control surfactants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yang D Y, Lu B, Zhao Y, et al. Fabrication of aligned fibrous arrays by magnetic electrospinning. Adv Mater, 2007, 19: 3702–3705CrossRefGoogle Scholar
  2. 2.
    Yang D Y, Niu X, Liu Y Y, et al. Electrospun nanofibrous membranes: A novel solid substrate for microfluidic immunoassays for HIV. Adv Mater, 2008, 20: 4770–4775CrossRefGoogle Scholar
  3. 3.
    Jiang L, Zhao Y, Zhai J. A lotus-leaf-like superhydrophobic surface: A porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew Chem Int Ed, 2004, 43: 4338–4341CrossRefGoogle Scholar
  4. 4.
    Li Z Y, Zhang H N, Zheng W, et al. Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers. J Am Chem Soc, 2008, 130: 5036–5037CrossRefGoogle Scholar
  5. 5.
    Nie H R, He A H, Zheng J F, et al. Effects of chain conformation and entanglement on the electrospinning of pure alginate. Biomacromolecules, 2008, 9: 1362–1365CrossRefGoogle Scholar
  6. 6.
    Zhang C X, Yuan X Y, Wu L L, et al. Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polym J, 2005, 41: 423–432CrossRefGoogle Scholar
  7. 7.
    Ye P, Xu Z K, Wu J, et al. Nanofibrous membranes containing reactive groups: Electrospinning from poly(acrylonitrile-co-maleic acid) for lipase immobilization. Macromolecules, 2006, 39: 1041–1045CrossRefGoogle Scholar
  8. 8.
    Hao R, Yuan J Y, Peng Q. Fabrication and sensing behavior of Cr2O3 nanofibers via in situ gelation and electrospinning. Chem Lett, 2006, 35: 1248–1249CrossRefGoogle Scholar
  9. 9.
    Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers. J Electrost, 1995, 35: 151–160CrossRefGoogle Scholar
  10. 10.
    Li D, Xia Y N. Electrospinning of nanofibers: Reinventing the wheel? Adv Mater, 2004, 16: 1151–1170CrossRefGoogle Scholar
  11. 11.
    Greiner A, Wendorff J H. Electrospinning: A fascinating method for the preparation of ultrathin fibres. Angew Chem Int Ed, 2007, 46: 5670–5703CrossRefGoogle Scholar
  12. 12.
    McKee M G, Layman J M, Cashion M P, et al. Phospholipid nonwoven electrospun membranes. Science, 2006, 311: 353–355CrossRefGoogle Scholar
  13. 13.
    Shenoy S L, Bates W D, Frisch H L, et al. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer-polymer interaction limit. Polymer, 2005, 46: 3372–3384CrossRefGoogle Scholar
  14. 14.
    Ohkawa K, Cha D I, Kim H, et al. Electrospinning of chitosan. Macromol Rapid Comm, 2004, 25: 1600–1605CrossRefGoogle Scholar
  15. 15.
    Ohkawa K, Minato K I, Kumagai G, et al. Chitosan nanofiber. Biomacromolecules, 2006, 7: 3291–3294CrossRefGoogle Scholar
  16. 16.
    Bhattarai N, Li Z S, Edmondson D, et al. Alginate-based nanofibrous scaffolds: Structural, mechanical, and biological properties. Adv Mater, 2006, 18: 1463–1467CrossRefGoogle Scholar
  17. 17.
    Sui X F, Yuan J Y, Yuan W Z, et al. Preparation of cellulose nanofibers/nanoparticles via electrospray. Chem Lett, 2008, 37: 114–115CrossRefGoogle Scholar
  18. 18.
    Xu S S, Zhang J, He A H, et al. Electrospinning of native cellulose from nonvolatile solvent system. Polymer, 2008, 49: 2911–2917CrossRefGoogle Scholar
  19. 19.
    Jiang X Y, Ng J M K, Stroock A D, et al. A miniaturized, parallel, serially diluted immunoassay for analyzing multiple antigens. J Am Chem Soc, 2003, 125: 5294–5295CrossRefGoogle Scholar
  20. 20.
    Lee S J, Choi J S, Park K S, et al. Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes. Biomaterials, 2004, 25: 4699–4707CrossRefGoogle Scholar
  21. 21.
    Brun J F, Criqui C, Orsetti A. Ultrasonic cleaning of polycarbonate sieves for filtration of whole-blood from health and diabetic subject. Clin Hemorheol, 1988, 8: 957–960Google Scholar
  22. 22.
    Yu A M, Liang Z J, Caruso F. Enzyme multilayer-modified porous membranes as biocatalysts. Chem Mater, 2005, 17: 171–175CrossRefGoogle Scholar
  23. 23.
    Shawon J, Sung C M. Electrospinning of polycarbonate nanofibers with solvent mixtures THF and DMF. J Mater Sci, 2004, 39: 4605–4613CrossRefGoogle Scholar
  24. 24.
    Kim G M, Michler G H, Potschke P. Deformation processes of ultrahigh porous multiwalled carbon nanotubes/polycarbonate composite fibers prepared by electrospinning. Polymer, 2005, 46: 7346–7351CrossRefGoogle Scholar
  25. 25.
    Saeed K, Park S Y, Lee H J, et al. Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite. Polymer, 2006, 47: 8019–8025CrossRefGoogle Scholar
  26. 26.
    Kim S J, Nam Y S, Rhee D M, et al. Preparation and characterization of antimicrobial polycarbonate nanofibrous membrane. Eur Polym J, 2007, 43: 3146–3152CrossRefGoogle Scholar
  27. 27.
    Arayanarakul K, Choktaweesap N, Aht-ong D, et al. Effects of poly(ethylene glycol), inorganic salt, sodium dodecyl sulfate, and solvent system on electrospinning of poly(ethylene oxide). Macromol Mater Eng, 2006, 291: 581–591CrossRefGoogle Scholar
  28. 28.
    Qin X H, Yang E L, Li N, et al. Effect of different salts on electrospinning of polyacrylonitrile (PAN) polymer solution. J App Polym Sci, 2007, 103: 3865–3870CrossRefGoogle Scholar
  29. 29.
    Zhou Y, Wang S X, Zhang K, et al. Visual detection of copper(II) by azide- and alkyne-functionalized gold nanoparticles using click chemistry. Angew Chem Int Ed, 2008, 47: 7454–7456CrossRefGoogle Scholar
  30. 30.
    Li Y, Yuan B, Ji H, et al. A method for patterning multiple types of cells by using electrochemical desorption of self-assembled monolayers within microfluidic channels. Angew Chem Int Ed, 2007, 46: 1094–1096CrossRefGoogle Scholar
  31. 31.
    Sun K, Wang Z X, Jiang X Y. Modular microfluidics for gradient generation. Lab Chip, 2008, 8: 1536–1543CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • DaYong Yang
    • 1
    • 2
  • Yang Wang
    • 1
  • DongZhou Zhang
    • 1
  • YingYi Liu
    • 1
    • 3
  • XingYu Jiang
    • 1
    Email author
  1. 1.National Center for Nanoscience and TechnologyBeijingChina
  2. 2.Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO)Chinese Academy of SciencesSuzhouChina
  3. 3.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations