Skip to main content
Log in

First-principles investigation on initial stage of 2H-SiC(001) surface oxidation

  • Articles/Composite Material
  • Published:
Chinese Science Bulletin

Abstract

We present comprehensive first-principles calculations on the initial stages of SiC oxidation by atomic oxygen on the 2H-SiC(001) surface. In order to study the kinetics of oxygen incorporation at the 2H-SiC(001) surface, we investigated adsorption and diffusion of oxygen atoms and SiO2 nucleation. The adsorption sites, corresponding to the local minima of the potential energy surface (PES) for isolated adatoms, were identified through a comparative study of the adatom binding energy at different locations. We found that the Bridge (siloxane) site is preferred over other adsorption sites. There is no energy barrier at 0K for oxygen insertion into this site. The diffusion energy barriers that the adatom has to overcome when jumping between two adsorption sites were calculated. The premises of silica nucleation were investigated by calculating the modifications of the oxygen atom binding energy due to the interaction with neighboring adatoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhatnagar M, Baliga B J. Comparison of 6H-SiC, 3C-SiC, and Si for power devices. IEEE Trans Electron Devices, 1993, 40(3): 645–655

    Article  Google Scholar 

  2. Sheppard S T, Melloch M R, Cooper J AJr. Characteristics of inversion- channel and buried-channel MOS devices in 6H-SiC. IEEE Trans. Electron Devices, 1994, 40(7): 1257–1264

    Article  Google Scholar 

  3. Cho W J, Kosugi R, et al. Study on electron trapping and interface states of various gate dielectric materials in 4H-SiC metal-oxide-semiconductor capacitors. Appl Phys Lett, 2000, 77(13): 2054–2056

    Article  Google Scholar 

  4. Bermudez V M. Photoemission study of oxygen adsorption on (001) silicon carbide surfaces. J Appl Phys, 1989, 66(12): 6084–6092

    Article  Google Scholar 

  5. Righi M C, Pignedoli C A, Felice R D, et al. Ab initio Simulations of homoepitaxial SiC growth. Phys Rev Lett, 2003, 91(13): 136101

    Article  Google Scholar 

  6. Ventra M D, Pantelides S T. Atomic-scale mechanisms of oxygen precipitation and thin-film oxidation of SiC. Phys Rev Lett, 1999, 83(8): 1624–1627

    Article  Google Scholar 

  7. Schmeißer D, Batchelor D R, Mikalo R P, et al. Oxide growth on SiC (0001) surfaces. Appl Surf Sci. 2001, 184(1–4): 340–345

    Article  Google Scholar 

  8. Rauls E, Hajnal Z, Deák P, et al. Theoretical study of the nonpolar surfaces and their oxygen passivation in 4H- and 6H-SiC. Phys Rev B, 2001, 64(24): 245323

    Article  Google Scholar 

  9. Jiang Z Y, Xu X H, Wu H S, et al. Ab initio calculation of SiC polytypes. Solid State Commun, 2002, 123(6): 263–266

    Article  Google Scholar 

  10. Kawamura F, Ogura T, Imade M, et al, Growth of 2H-SiC single crystals in a Li-based flux. Mater Lett, 2008, 62(6–7): 1048–1051

    Article  Google Scholar 

  11. Son N T, Kordina O, KonstantinovA O, et al. Growth of 2H-SiC single crystals in a Li-based flux. Appl Phys Lett, 1994, 65(25): 3209–3211

    Article  Google Scholar 

  12. Virojanadara C, Johansson L I. Metastable oxygen adsorption on SiC (0001)- √3 × √3 R30°. Surf Sci, 2002, 519(1–2): 73–78

    Article  Google Scholar 

  13. Amy F, Soukiassian P, Hwu Y K, et al. Si-rich 6H- and 4H-SiC(0001) 3×3 surface oxidation and initial SiO2/SiC interface formation from 25 to 650°C. Phys Rev B, 2002, 65(16): 165323

    Article  Google Scholar 

  14. Virojanadara C, Johansson L I. Oxidation studies of 4H-SiC (0001) and (0001). Surf Sci, 2002, 505: 358–366

    Article  Google Scholar 

  15. Deak P, Gali A, Knaup J, et al. Defects of the SiC/SiO2 interface: energetics of the elementary steps of the oxidation reaction. Physica B, 2003, 340–342: 1069–1073

    Article  Google Scholar 

  16. Xie X N, Loh K P, Yakolev N, et al. Oxidation of the 3×3 6H-SiC (0001) adatom cluster: a periodic density functional theory and dynamic rock ing beam analysis. J Chem Phys, 2003, 119(9): 4905–4915

    Article  Google Scholar 

  17. Yu B D, Kim Y J, Jeon J J, et al. Ab initio study of incorporation of O2 molecules into Si(001) surfaces: oxidation by Si ejection. Phys Rev B, 2004, 70(3): 033307

    Article  Google Scholar 

  18. Radtke C, Baumvol I J R, Ferrera B C, et al. Oxygen transport and incorporation mechanisms in the dry thermal oxidation of 6H-SiC. Appl Phys Lett, 2004, 85(16): 3402–3404

    Article  Google Scholar 

  19. Hoshino Y, Fukuyama R, Kido Y. Oxidized surface structure and oxidation kinetics of the C-terminated 6H-SiC(000 \( \overline 1 \))-(2×2) surface. Phys Rev B, 2004, 70(16): 165303

    Article  Google Scholar 

  20. Virojanadara C, Johansson L I. Photoemission study of Si-rich 4H-SiC surfaces and initial SiO2/SiC interface formation. Phys Rev B, 2005, 71(19): 195335

    Article  Google Scholar 

  21. Wachowicz E, Rurali R, Ordejón P, et al. First stages of the oxidation of the Si-rich 3C-SiC(0 0 1) surface. Comput Mater Sci, 2005, 33(1–3): 13–19

    Article  Google Scholar 

  22. Soukiassian P, Amy F. Silicon carbide surface oxidation and SiO2/SiC interface formation investigated by soft X-ray synchrotron radiation. J Electron Spectrosc, 2005, 144–147: 783–788

    Article  Google Scholar 

  23. Zou C W, Sun B, Wu Y Y, et al. Photoemission study of the initial oxidation of 6H-SiC(000 \( \overline 1 \))-(2×2)C. J Electron Spectrosc, 2006, 151: 40–44

    Article  Google Scholar 

  24. Maekawa M, Kawasuso A, Yoshikawa M, et al. Structure of SiO2/4HSiC interface probed by positron annihilation spectroscopy. Phys Rev B, 2006, 73(1): 014111

    Article  Google Scholar 

  25. Voegeli W, Akimoto K, Urata T, et al. Structure of the oxidized 4H-SiC(0 0 0 1)-3 × 3 surface. Surf Sci, 2007, 601(4): 1048–1053

    Article  Google Scholar 

  26. Henkelman G, Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys, 2000, 113(22): 9901–9904

    Article  Google Scholar 

  27. Delley B. From molecules to solids with the DMol3 approach. J Chem Phys, 2000, 113(18): 7756–7764

    Article  Google Scholar 

  28. Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B, 1992, 46(11): 6671–6687

    Article  Google Scholar 

  29. Govind N, Petersen M, Fitzgerald G, et al. A generalized synchronous transit method for transition state location. Comput Mater Sci, 2003, 28(2): 250–258

    Article  Google Scholar 

  30. Rice B M, Raff L M, Thompson D L. Diffusion of H atoms on a Si(111) surface with partial hydrogen coverage: Monte Carlo variational phase-space theory with tunneling correction. J Chem Phys, 1988, 88(11): 7221–7231

    Article  Google Scholar 

  31. Sun Q, Selloni A, Myers T H, et al. Oxygen adsorption and incorporation at irradiated GaN(0001) and GaN(000) surfaces: first-principles density-functional calculations. Phys Rev B, 2006, 74(19): 195317

    Article  Google Scholar 

  32. Ye H G, Chen G D, Zhu Y Z, et al. Asymmetry of adsorption of oxygen at wurtzite AlN (0001) and (000) surfaces: first-principles calculations. Phys Rev B, 2008, 77(3): 033302

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JunJie Wang.

Additional information

Supported by Snecma Propulsion Solide (Contract FPR No. 0539298A), Natural Science Foundation of China (Grant No 50802076) and Flying Star Program of Northwestern Polytechnical University of China

About this article

Cite this article

Wang, J., Zhang, L., Zeng, Q. et al. First-principles investigation on initial stage of 2H-SiC(001) surface oxidation. Chin. Sci. Bull. 54, 1487–1494 (2009). https://doi.org/10.1007/s11434-009-0133-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0133-3

Keywords

Navigation