Paleoproterozoic reworking of ancient crust in the Cathaysia Block, South China: Evidence from zircon trace elements, U-Pb and Lu-Hf isotopes

Abstract

A combined study of zircon LA-ICP-MS U-Pb dating, trace elements and Hf isotope was carried out for gneissic granite from the Sanzhishu area in Jingning, SW Zhejiang Province. Nearly all the zircons separated from the granite exhibited oscillatory zoning and high Th/U ratios (>0.1). The REE profile showed a pronounced positive Ce anomaly, negative Eu anomaly and an enrichment of HREE, which are typical characteristics of magmatic zircon. Thirteen concordant or nearly concordant analytical data yielded a weighted mean 207Pb/206Pb age of 1860±13 Ma (MSWD=0.084), representing the formation age of the granite. The magmatic zircons had negative εHf(t) values of −15.6 to −10.0 and two-stage Hf model ages of 3.1 to 3.4 Ga, indicating that the granites were formed by reworking of ancient crust. The major- and trace-element data indicate that the gneissic granites are metaluminous high-K calc-alkaline rocks and exhibit the same geochemical characteristics as aluminous A-type granites, implying the emplacement of the granite in a post-orogenic extensional tectonic setting. We conclude that the Paleoproterozoic crustal reworking event in the Cathaysia Block of South China marked the transition from assembly to break-up of the Columbia supercontinent.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Zheng Y F, Zhang S B. Formation and evolution of Precambrian continental crust in South China. Chin Sci Bull, 2007, 52(1): 1–12

    Article  Google Scholar 

  2. 2

    Yu J H, Wei Z Y, Wang L J, et al. Cathaysia Block: A young continent composed of ancient materials (in Chinese). Geol J China Univ, 2006, 12(4): 440–447

    Google Scholar 

  3. 3

    Jin W S, Zhuang J M, Yang C X, et al. Characteristics of petrology, geochermstry and metamorphism of the Pre-Caledonian regional metamorphic rocks in Fujian Province (in Chinese). Geol Fujian, 1992, 11(4): 241–262

    Google Scholar 

  4. 4

    Jin W S, Sun D Z, Zhao F Q et al. Deep Crustal Structure and its Evolution of South China (in Chinese). Beijing: Geological Publishing House, 1997

    Google Scholar 

  5. 5

    Zhao F Q, Chen Y Z, Li R A. Study on the Multiple Deformations and Structural Levels of the Precaledonian Metamorphic Basement in Northern Fujian(in Chinese). Geol Fujian, 1993, 12(1): 33–40

    Google Scholar 

  6. 6

    Hu X J, Xu J K, Tong Z X, et al. The Precambrian Geology of Southwestern Zhejiang Province (in Chinese). Beijing: Geological Publishing House, 1991. 1–278

    Google Scholar 

  7. 7

    Hu X J, Xu J K, Chen C H, et al. Single-grain zircon U-Pb ages for the early Proterozoic granite and pegmatitc from southwestern Zhejiang (in Chinese). Chin Sci Bull, 1992, 37(11): 1016–1018

    Google Scholar 

  8. 8

    Gan X C, Li H M, Sun D Z, et al. A geochronologicaI study on Early Proterozoic granitic rocks, southwestern Zhejiang (in Chinese). Acta Petrol Mineral, 1995, 14(1): 1–8

    Google Scholar 

  9. 9

    Wang Y X, Zhao Z H, Bao Z W, et al. Geochemistry of granitoids from Zhejiang Province and crustal evolution-II. Proterozoic granitoids (in Chinese). Geochimica, 1997, 26(6): 57–68

    Google Scholar 

  10. 10

    Li X H. Timing of the Cathaysia Block formation: Constraints from SHRIMP U-Pb zircon geochronology. Episodes, 1997, 20(3): 188–192

    Google Scholar 

  11. 11

    Wang X, Chen J, Luo D. Study on petrogenesis of zircons from the Danzhu granodiorite and its geological implications (in Chinese). Geol Rev, 2008, 54(3): 387–398

    Google Scholar 

  12. 12

    Li Z X, Li X H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 2007, 35(2): 179–182

    Article  Google Scholar 

  13. 13

    Yu J H, Wang L J, Wei Z Y. Geochemistry and zircon U-Pb-Hf isotope composition of the Paleoproterozoic Danzhu granite from southwestern Zhejiang (in Chinese). In: Abstract in Petrological Conference. Wuhan: China University of Geosciences Press, 2007. 128

    Google Scholar 

  14. 14

    Chen D F, Li X H, Pang J M, et al. Metamorphic newly produced zircons, SHRIMP ion microprobe U-Pb age of amphibolite of Hexi Group, Zhejiang and its implications (in Chinese). Acta Miner Sin, 1998, 18(4): 396–400

    Google Scholar 

  15. 15

    Chen D F, Dong W Q, Chen X P. Proterozoic stratum of Hexi Group, Zhejiang and its tectonic significance (in Chinese). In: Li J L, ed. The Continental Lithospheric Structure and Geological Evolution of the Southeast China. Beijing: Metallurgical Industry Press, 1993. 158–161

    Google Scholar 

  16. 16

    Xiang H, Zhang L, Zhou H W, et al. U-Pb zircon geochronology and Hf isotope study of Metamorphosed basic-ultrabasic rocks from metamorphic basement in southwest Zhejiang: The response of the Cathaysia block to indosinian orogenic event. Sci China Ser D-Earth Sci, 2008, 51(6): 788–800

    Article  Google Scholar 

  17. 17

    Tong C X, Hu X J, Jin Q T, et al. Finding of the Paleoproterozoic granite gneiss from Jingning area, southeastern Zhejiang and its significance (in Chinese). In: Li J L, ed. The Continental Lithospheric Structure and Geological Evolution of the Southeast China. Beijing: Metallurgical Industry Press, 1993. 173–175

    Google Scholar 

  18. 18

    Zeng W, Zhang L, Zhou H W, et al. Caledonian reworking of Paleoproterozoic basement in the Cathaysia Block: Constraints from zircon U-Pb dating, Hf isotopes and trace elements. Chin Sci Bull, 2008, 53(6): 895–904

    Article  Google Scholar 

  19. 19

    Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostand Geoanaly Res, 2004, 28(3): 353–370

    Article  Google Scholar 

  20. 20

    Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem Geol, 2002, 192: 59–79

    Article  Google Scholar 

  21. 21

    Ludwig K R. Users manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel. Berkeley Geochron Cent Spec Pub, 2003, (4): 25–32

  22. 22

    De Bievre, Taylor P D P. Table of the isotopic compositions of the elements. Int J Mass Spectrom, 1993, 123(2): 149–166

    Article  Google Scholar 

  23. 23

    Chu M F, Chung S L, Song B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 2006, 34(9): 745–748

    Article  Google Scholar 

  24. 24

    Scherer E, Muenker K C, Mezger K. Calibration of the lutetium- hafnium clock. Science, 2001, 293(5530): 683–687

    Article  Google Scholar 

  25. 25

    Blichert-Toft J, Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett, 1997, 148(1–2): 243–258

    Article  Google Scholar 

  26. 26

    Vervoort J D, Blichert-Toft J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim Cosmochim Acta, 1999, 63(3–4): 533–556

    Article  Google Scholar 

  27. 27

    Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 2002, 61(3–4): 237–269

    Article  Google Scholar 

  28. 28

    Boynton W V. Geochemistry of the rare earth elements: Meteorite studies. In: Henderson P. ed. Rare Earth Element Geochemistry. New York: Elsevier, 1984. 63–114

    Google Scholar 

  29. 29

    McDonough W F, Sun S S. Composition of the Earth. Chem Geol, 1995, 120: 223–253

    Article  Google Scholar 

  30. 30

    Corfu F, Hanchar J M, Hoskin P W O, et al. Altas of zircon textures. Rev Miner Geochem, 2003, 53: 469–500

    Article  Google Scholar 

  31. 31

    Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age. Chin Sci Bull, 2004, 49(15): 1554–1569

    Article  Google Scholar 

  32. 32

    Vavra G, Gebauer D, Schmid R, et al. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): An ion microprobe (SHRIMP) study. Contrib Mineral Petrol, 1996, 122: 337–358

    Article  Google Scholar 

  33. 33

    Wan Y S, Liu D Y, Xu M H, et al. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia block, China: Tectonic implications and the need to redefine lithostratigraphic units. Gondwana Res, 2007, 12(1–2): 166–183

    Article  Google Scholar 

  34. 34

    Liu R, Zhang L, Zhou H W, et al. Petrogenesis of the Caledonian migmatites and related granites in northwestern Fujian Province, South China: Syn-deformational crustal anatexis (in Chinese). Acta Petrol Sin, 2008, 24(6): 1205–1222

    Google Scholar 

  35. 35

    Ding X, Zhou X M, Sun T. The episodic growth of the continental crustal basement in South China: Single zircon LA-ICPMS U-Pb dating of Guzhai granodiorite in Guangdong (in Chinese). Geol Rev, 2005, 51(4): 382–392

    Google Scholar 

  36. 36

    Yu J H, O’Reilly Y S, Wang L J, et al. Finding of ancient materials in Cathaysia and implication for the formation of Precambrian crust. Chin Sci Bull, 2007, 52(1): 13–22

    Article  Google Scholar 

  37. 37

    Yu J H, Wang L J, Zhou X M, et al. Compositions and formation history of the basement metamorphic rocks in northeastern Guangdong Province (in Chinese). J Chin Univ Geosci (Earth Sci), 2006, 31(1): 38–48

    Google Scholar 

  38. 38

    Yu J H, Griffin W L, Wang L J, et al. Where was South China in the Rodinia supercontinent? Evidence from U-Pb ages and Hf isotopes of detrital zircons. Precambrian Res, 2008, 164: 1–15

    Article  Google Scholar 

  39. 39

    Yu J H, Zhou X M, O’Reilly Y S, et al. Formation history and protolith characteristics of granulite facies metamorphic rock in central cathaysia deduced from U-Pb and Lu-Hf isotopic grains. Chin Sci Bull, 2005, 50(18): 2080–2089

    Article  Google Scholar 

  40. 40

    Shen W Z, Ling H F, Li W X, et al. Study on the Nd-Sr isotopic compositions of granitoids in SE China (in Chinese). Geol J China Univ, 1999, 5(1): 22–32

    Google Scholar 

  41. 41

    Shen W Z, Ling H F, Li W X, et al. Crust evolution in Southeast China: Evidence from Nd model ages of granitoids. Sci China Ser D-Earth Sci, 2000, 43(1): 36–49

    Article  Google Scholar 

  42. 42

    Zhang S B, Zheng Y F, Wu Y B, et al. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambian Res, 2006, 151: 265–288

    Article  Google Scholar 

  43. 43

    Zhang S B, Zheng Y F, Wu Y B, et al. Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China. Earth Planet Sci Lett, 2006, 252: 56–71

    Article  Google Scholar 

  44. 44

    Zheng J P, Griffin W L, O’Reilly S Y, et al. Widespread Archean basement beneath the Yangtze craton. Geology, 2006, 34: 417–420

    Article  Google Scholar 

  45. 45

    Whalen J B, Currie K L, Chappell B W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol, 1987, 95: 407–419

    Article  Google Scholar 

  46. 46

    Watson E B, Harrison T M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett, 1983, 64: 295–304

    Article  Google Scholar 

  47. 47

    King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan Fold belt, Southeastern Australia. J Petrol, 1997, 38: 371–391

    Article  Google Scholar 

  48. 48

    Jung S, Mezger K, Hoerness S. Petrology and geochemistry of syn- to post-collisional metaluminous A-type granites: A major and trace element and Nd-Sr-Pb-O-isotope study from the Proterozoic Damara Belt, Namibia. Lithos, 1998, 45: 147–175

    Article  Google Scholar 

  49. 49

    Rajesh H M. Characterization and origin of a compositionally zoned aluminous A-type granite from South India. Geol Mag, 2000, 137(3): 291–318

    Article  Google Scholar 

  50. 50

    Gualda G A R, Vlach S R F. The Serra da Graciosa A-type granites and syenites, southern Brazil. Part 1: Regional setting and geological characterization. An Acad Bras Cienc, 2007, 79(3): 405–430

    Google Scholar 

  51. 51

    Eby G N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 1990, 26: 115–134

    Article  Google Scholar 

  52. 52

    Qiu J S, Wang D Z, McInnes B I A, et al. Two subgroups of A-type granites in the coastal area of Zhejiang and Fujian Provinces, SE China: Age and geochemical constraints on their petrogenesis. Trans R Soc Edinburgh: Earth Sci, 2004, 95: 227–236

    Article  Google Scholar 

  53. 53

    Hu J, Qiu J S, Wang D Z, et al. Comparative investigations of A-type granites in the coastal and the Nanling inland areas of SE China, and their tectonic significances (in Chinese). Geol J China Univ, 2005, 11(3): 404–414

    Google Scholar 

  54. 54

    Collins W J, Beams S D, White A J K, et al. Nature and origin of A type granites with particular reference to southeastern Australia. Contrb Mineral Petrol, 1982, 80: 189–200

    Article  Google Scholar 

  55. 55

    Patiño Douce A E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 1997, 25: 743–746

    Article  Google Scholar 

  56. 56

    Poitrasson F, Pin C, Duthou J L. Aluminous subsolvus anorogenic granite genesis in the light of Nd isotope heterogeneity. Chem Geol, 1994, 112: 199–219

    Article  Google Scholar 

  57. 57

    Poitrasson F, Duthou J L, Pin C. The relationship between petrology and Nd isotopes as evidence for contrasting anorogenic granite genesis: Example of the Corsican Province, SE France. J Petrol, 1995, 36: 1251–1274

    Google Scholar 

  58. 58

    Wei C S, Zheng Y F, Zhao Z F, et al. Oxygen and neodymium isotope evidence for recycling of juvenile crust in northeast China. Geology, 2002, 30: 375–378.

    Article  Google Scholar 

  59. 59

    Su Y P, Tang H F, Hou G S, et al. Geochemistry of aluminous A-type granites along the Darabut tectonic belt in West Junggar, Xinjiang (in Chinese). Geochimica, 2006, 35(1): 55–67

    Google Scholar 

  60. 60

    Xu X S, O’Reilly S Y, Griffin W L, et al. Relict Proterozoic basement in the Nanling Mountains (SE China) and its tectonothermal overprinting. Tectonics, 2005, 24(2), doi: 10.1029/2004TC001652

  61. 61

    Pearce J A. Sources and settings of granitic rocks. Episodes, 1996, 19(4): 120–125

    Google Scholar 

  62. 62

    Eby G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 1992, 20: 641–644

    Article  Google Scholar 

  63. 63

    Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 1999, 46: 605–626

    Article  Google Scholar 

  64. 64

    Pitcher W S. The nature and origin of granite. 2nd ed. London: Chapman and Hall, 1997. 1–387

    Google Scholar 

  65. 65

    Barbarin B. Granitoids: Main petrogenetic classifications in relation to origin and tectonic setting. Geol J, 1990, 25: 227–238

    Article  Google Scholar 

  66. 66

    Kusky T M, Li J H. Paleoproterozoic tectonic evolution of the NCC. J Asian Earth Sci, 2003, 22: 383–397

    Article  Google Scholar 

  67. 67

    Zhai M G, Guo J H, Liu W J. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: A review. J Asian Earth Sci, 2005, 24: 547–561

    Article  Google Scholar 

  68. 68

    Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res, 2005, 136: 177–202

    Article  Google Scholar 

  69. 69

    Wilde S A, Zhao G C, Sun M. Development of the North China Craton during the Late Archaean and its amalgamation along a major 1.8 Ga collision zone: Including speculations on its position within a global Paleoproterozoic Supercontinent. Gondwana Res, 2002, 5: 85–94

    Article  Google Scholar 

  70. 70

    Li X H, Sun M, Wei G J, et al. Geochemical and Sm-Nd isotopic study of amphibolites in the Cathaysia Block, southeastern China: Evidence for an extremely depleted mantle in the Paleoproterozoic. Precambian Res, 2000, 102: 251–262

    Article  Google Scholar 

  71. 71

    Xu Y H, Zhao T P, Peng P, et al. Geochemical characteristics and geologic significance of the Paleoproterozoic volcanic rocks from the Xiaoliangling Formation in the Luliang area, Shanxi Province (in Chinese). Acta Petrol Sin, 2007, 23(5): 1123–1132

    Google Scholar 

  72. 72

    Zhao T P, Chen F K, Zhai M G, et al. Single zircon U-Pb ages and their geological significance of the Damiao anorthosite complex, Hebei Province, China(in Chinese). Acta Petrol Sin, 2004, 20(3): 685–690

    Google Scholar 

  73. 73

    Zhao T P, Xu Y H, Zhai M G. Petrogenesis and tectonic setting of the Paleoproterozoic Xiong’er Group in the southern part of the North China Craton: A review (in Chinese). Geol J China Univ, 2007, 13(2): 191–206

    Google Scholar 

  74. 74

    Zhai M G, Liu W J. Palaeoproterozoic history of the North China craton: A review. Precambrian Res, 2003, 122: 183–199

    Article  Google Scholar 

  75. 75

    Zhai M G, Peng P. Paleoproterozoic events in the North China Craton (in Chinese). Acta Petrol Sin, 2007, 23(11): 2665–2682

    Google Scholar 

  76. 76

    Peng P, Zhai M G, Zhang H F, et al. Geochemistry and geologic significance of the 1.8 Ga mafic dyke swarms in the North China Craton: An example from the juncture of Shanxi, Hebei and Inner Mongolia (in Chinese). Acta Petrol Sin, 2004, 20(3): 439–456

    Google Scholar 

  77. 77

    Hou G T, Li J H, Yang M H, et al. Geochemical constraints on the tectonic environment of the Late Paleoproterozoic mafic dyke swarms in the North China Craton. Gondwana Res, 2008, 13: 103–116

    Article  Google Scholar 

  78. 78

    Hou G T, Liu Y L, Li J H. The evidence of ∼1.8 Ga extension of NCC from the U-Pb SHRIMP dating of mafic dyke in the Shandong Province. J Asian Earth Sci, 2006, 27: 392–401

    Article  Google Scholar 

  79. 79

    Hou G T, Wang C C, Li J H, et al. The Paleoproterozoic extension and reconstruction of paleostress field of the North China Craton. Tectonophysics, 2006, 422: 87–98

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to HanWen Zhou.

Additional information

Supported by National Natural Science Foundation of China (Grant No. 40873004), Special Funds for National Scientific Research of Commonweal Industries, the Ministry of Land and Resources of China (Grant No. 2008110015), Opening Foundation of State Key Laboratory of Continental Dynamics, Northwest University (Grant No. 06LCD12) and the Project of Land and Resources Bureau of Zhejiang Province (Grant No. 2004005)

About this article

Cite this article

Liu, R., Zhou, H., Zhang, L. et al. Paleoproterozoic reworking of ancient crust in the Cathaysia Block, South China: Evidence from zircon trace elements, U-Pb and Lu-Hf isotopes. Chin. Sci. Bull. 54, 1543–1554 (2009). https://doi.org/10.1007/s11434-009-0096-4

Download citation

Keywords

  • zircon U-Pb age
  • Hf isotope
  • Paleoproterozoic
  • crustal reworking
  • southwestern Zhejiang Province