Chinese Science Bulletin

, 54:806 | Cite as

Geochemical environmental changes and dinosaur extinction during the Cretaceous-Paleogene (K/T) transition in the Nanxiong Basin, South China: Evidence from dinosaur eggshells

  • ZiKui ZhaoEmail author
  • XueYing Mao
  • ZhiFang Chai
  • GaoChuang Yang
  • FuCheng Zhang
  • Zheng Yan
Articles / Geology


The complex patterns of trace elements including Ir and isotope distributions in the three K/T sections of the Nanxiong Basin prove the existence of two environmental events in the latest Cretaceous and earliest Paleocene. The first geochemical environmental event occurred at about 2 Ma prior to the K/T boundary interval, where the dinosaur diversity was hardly reduced, except that a number of pathological eggshells appeared. The second one was larger and occurred just at and near the Cretaceous-Paleogene (K/T) boundary. The extinction of the dinosaurs spread out within 250 ka with major extinction beginning at the boundary interval. This is even later than their extinction in Montana, North America and in India. The cause of the dinosaur extinction may be the result of a complex multiple events brought about by the coincidence of global environment change marked by multiple Ir and δ18O anomalies, and environmental poisoning characterized by other trace elements derived from the local source. Successive short- and long-term conditions of geochemically induced environmental stress negatively affected the reproductive process and thus contributed to the extinction of the dinosaurs.


Nanxiong Basin of Guangdong Province Cretaceous-Paleogene (K/T) boundary Ir anomaly trace element stable isotope dinosaur eggshell dinosaur extinction 


  1. 1.
    Alvarez L W, Alvarez W, Asaro F, et al. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 1980, 208: 1095–1108CrossRefGoogle Scholar
  2. 2.
    Alvarez W, Alvarez L W, Asaro F, et al. The end of the Cretaceous sharp boundary or gradual transition? Science, 1984, 223: 1183–1186CrossRefGoogle Scholar
  3. 3.
    Alvarez W, Kauffman E G, Surelyk F, et al. Impact theory of mass extinctions and the invertebrate fossil record. Science, 1984, 223: 1135–1141CrossRefGoogle Scholar
  4. 4.
    Archibald J D. Dinosaur Extinction and the End of an Era: What the Fossils Say. New York: Columbia University Press, 1996. 1–237Google Scholar
  5. 5.
    Archibald J D, Clemens W A. Late Cretaceous extinctions. Am Sci, 1982, 70: 377–385Google Scholar
  6. 6.
    Sloan R E, Rigby J K Jr, Van Valen L M, et al. Gradual dinosaur extinction and simultaneous ungulate radiation in the Hell Creek Formation. Science, 1986, 232: 629–633CrossRefGoogle Scholar
  7. 7.
    Rigby J K Jr, Newman K R, Smit J, et al. Dinosaurs from the Paleocene part of the Hell Creek Formation, McCone County, Montana. Palaios, 1987, 2: 296–302CrossRefGoogle Scholar
  8. 8.
    Smit J, Alexander W, Van Der Kaars, et al. Stratigraphic aspects of the Cretaceous-Tertiary boundary in the Bug Creek area of eastern Montana, USA. Men Soc Geol France, 1987, 150: 53–73Google Scholar
  9. 9.
    Sheehan P M, Fastovsky D E, Hoffman R G, et al. Sudden extinction of the dinosaurs: Latest Cretaceous, Upper Great Plains, USA. Science, 1991, 254: 835–839CrossRefGoogle Scholar
  10. 10.
    Zhao Z K, Ye J, Li H M, et al. Extinction of the dinosaurs across the Cretaceous-Tertiary in Nanxiong Basin, Guangdong Province (in Chinese). Vert PalAsia, 1991, 29: 1–20Google Scholar
  11. 11.
    Zhao Z K, Wang J K, Chen S X, et al. Amino acid composition of dinosaur eggshells nearby the K/T boundary in Nanxiong Basin, Guangdong Province, China. Palaeogeogr Palaeoclimatol Palaeoecol, 1993, 104: 213–218CrossRefGoogle Scholar
  12. 12.
    Zhao Z K, Mao X Y, Chai Z F, et al. Iridium anomalies in dinosaur eggshells at the Cretaceous-Paleogene (K/T) boundary in the Nanxiong Basin, South China (in Chinese). Sci China. Ser D-Earth Sci, 1998, 28: 425–430Google Scholar
  13. 13.
    Zhao Z K, Yan Z. Stable isotopic studies of dinosaur eggshells from the Nanxiong Basin, South China. Sci China Ser D-Earth Sci, 2000, 43(1): 84–92CrossRefGoogle Scholar
  14. 14.
    Zhao Z K, Mao X Y, Chai Z F, et al. A possible causal relationship between extinction of dinosaurs and K/T iridium enrichment in the Nanxiong Basin, South China: Evidence from dinosaur eggshells. Palaeogeogr Palaeoclimatol Palaeoecol, 2002, 178: 1–17CrossRefGoogle Scholar
  15. 15.
    Erben H K, Ashraf A R, Bohm H, et al. Die Kreide/Tertiar-Grenze im Nanxiong-Becken (Kontinentalfazies, Sudostchina). Mainz: Franz Steiner Verlag, Erdwiss Forsch, 1995, 32: 1–245Google Scholar
  16. 16.
    Stets J, Ashraf A R, Erben H K, et al. The Cretaceous-Tertiary boundary in the Nanxiong Basin (Continental facies, Southeast China). In: MacLeod N, Keller G, eds. The Cretaceous-Tertiary Mass Extinction: Biotic and Environmental Effect. New York: Norton W W, 1996. 349–371Google Scholar
  17. 17.
    Yang G C, Mao X Y, Wang J C, et al. A study on the relationship between iridium concentration in hen eggshell and iridium-enriched feed by NAA. J Radioanal Nucl Chem, 2001, 247: 567–570CrossRefGoogle Scholar
  18. 18.
    Zhao Z K. The dinosaur eggs in China: On the structure and evolution of eggshells. In: Carpenter K, Hirsch K F, Horner J R, eds. Dinosaur Eggs and Babies. Cambridge: Cambridge University Press, 1994. 184–203Google Scholar
  19. 19.
    Lü J C. Oviraptorid Dinosaurs From Southern China (in Chinese). Beijing: Geological Publishing House, 2005. 1–200Google Scholar
  20. 20.
    Taylor T G. How an eggshell is made. In: Vertebrate Structures and Functions, San Francisco, Freeman, 1974. 371–377Google Scholar
  21. 21.
    Thibault C, Beaumont A, Levasseur M C. La reproduction des vertebras. Paris: Masson, 1998. 1–307Google Scholar
  22. 22.
    Folinsbee R E, Fritz P, Krouze H R, et al. Carbon-13 and oxygen-18 in dinosaur, crocodile, and bird eggshells indicate environmental conditions. Science, 1970, 168: 1353–1356CrossRefGoogle Scholar
  23. 23.
    Von Schirnding Y, Merwe N J, Van Der Vogel J C. Influence of diet and age on carbon isotope ratios in ostrich eggshells. Archaeometry, 1982, 24: 3–20CrossRefGoogle Scholar
  24. 24.
    Guo B S, Zhu W M, Xiong B K, et al. Rare earth elements in agriculture (in Chinese). Beijing: China Argicultural Science and Technology Press, 1988. 1–220Google Scholar
  25. 25.
    Norell M A, Clark J M, Demberelyin D, et al. A theropod dinosaur embryo and the affinities of the Flaming Cliffs dinosaur eggs. Science, 1994, 266: 779–782CrossRefGoogle Scholar
  26. 26.
    Norell M A, Clark J M, Chiappe L M, et al. A nesting dinosaur. Nature, 1995, 378: 774–776CrossRefGoogle Scholar
  27. 27.
    Horner J R, Weishampel D B. A comparative embryological study of two ornithischian dinosaurs: Correction. Nature, 1996, 383: 103Google Scholar
  28. 28.
    Varricchio D J, Horner J R, Jackson F D. Embryos and eggs for the Cretaceous theropod dinosaur Troodon formosus. J Vertebr Paleontol, 2002, 22: 564–576CrossRefGoogle Scholar
  29. 29.
    Zhao Z K. Nesting behavior of dinosaurs as interpreted from the Chinese Cretaceous dinosaur eggs. Paleont Soc Korea, Spec Publ, 2000, 4: 115–126Google Scholar
  30. 30.
    Zhao Z K. The nesting behavior of troodontid dinosaurs (in Chinese). Vert PalAsia, 2003, 41: 157–168Google Scholar
  31. 31.
    Mohabey D M. Understanding community structure, nesting and extinction of Upper Cretaceous (Maestrichtian) Indian Dinosaurs: Evidences from eggs and nests. Gond Geol Mag, 2000, 15: 1–23Google Scholar
  32. 32.
    Hansen H J, Toft P, Mohabey D M, et al. Lameta age: Dating the main pulse of Deccan Trap volcanism. Gond Geol Mag, 1996, 2: 365–374Google Scholar
  33. 33.
    Hansen H J, Mohabey D M, Toft P. New data on Indian K-T boundaries. In: International Seminar on Recent Advances in the Study of Cretaceous Sections. (ONGC) Chennal, India, 1998. 25–26Google Scholar
  34. 34.
    Hansen H J, Toft P, Mohabey D M. No K-T boundary at Anjar, Gujarat, India. In: Seminar on Deccan Trap Basalts and K-T Boundary. PRL, Ahmedabad, 1999. 9–10Google Scholar
  35. 35.
    Hildebrand A R, Penfield G T, Kring D A, et al. Chicxulub crater: A possible Cretaceous-Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology, 1991, 19: 867–871CrossRefGoogle Scholar
  36. 36.
    Hildebrand A R, Pilkington M, Connors M, et al. Size and structure of the Chicxulub crater revealed by horizontal gradients and cenotes. Nature, 1995, 376: 415–417CrossRefGoogle Scholar
  37. 37.
    Kamo S L, Krogh T E. Chicxulub crater source for shocked zircon crystals from the Cretaceous-Tertiary boundary layer, Saskatchewan: Evidence from new U-Pb data. Geology, 1995, 23: 281–284CrossRefGoogle Scholar
  38. 38.
    Courtillot V. Deccan volcanism at the Cretaceous-Tertiary boundary: Past climatic crisis as a key to future? Palaeogeogr Palaeoclimatol Palaeoecol, 1990, 89: 291–299CrossRefGoogle Scholar
  39. 39.
    Duncan R A, Pyle D G. Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary. Nature, 1988, 333: 841–843CrossRefGoogle Scholar
  40. 40.
    Venkatesan T R, Pande K, Gopalan K. Did Deccan volcanism pre-date the Cretaceous/Tertiary transition? Earth Planet Sci Lett, 1993, 119: 181–189CrossRefGoogle Scholar
  41. 41.
    Baksi A K. Geochronological studies on whole-rock basalts, Deccan Traps, India: Evaluation of the timing of volcanism relative to the K-T boundary. Earth Planet Sci Lett, 1994, 121: 43–56CrossRefGoogle Scholar
  42. 42.
    Bhattacharji S, Chatterjee N, Wampler J M, et al. Indian intraplate and continental margin rifting, lithospheric extension, and mantle upwelling in Deccan flood basalt volcanism near the K/T boundary: Evidence from mafic dike swarms. J Geol, 1996, 104: 379–398CrossRefGoogle Scholar
  43. 43.
    Sheth H C, Duncan R A, Chandrasekharam D, et al. Deccan Trap dioritic gabbros from the western Satpura-Tapi region. Current Sci, 1997, 72: 755–757Google Scholar
  44. 44.
    Allegre C J, Birck J L, Capmas F, et al. Age of the Deccan Traps using 187Re-187Os systematics. Earth Planet Sci Lett, 1999, 170: 197–204CrossRefGoogle Scholar
  45. 45.
    Mahoney J J, Sheth H C, Chandrasekharam D, et al. Geochemistry of flood basalts of the Toranmal section, northern Deccan traps, India: Implications for region Deccan stratigraphy. J Petrol, 2000, 41: 1099–1120CrossRefGoogle Scholar
  46. 46.
    Hoffmann C, Feraud G, Courtillot V. 40Ar/39Ar dating of mineral separates and whole rocks from the Western Ghats lava pile: Further constraints on duration and age of Deccan Traps. Earth Planet Sci Lett, 2000, 180: 13–27CrossRefGoogle Scholar
  47. 47.
    Cox K G. Gradual volcanic catastrophes? Nature, 1988, 333: 802CrossRefGoogle Scholar
  48. 48.
    Sant D A, Mathew G, Khadkikar A S, et al. Co-existent cristobalite and iridium at 65 Ma, Anjar Intertrappeans, Kachchh, western India. Cretac Res, 2003, 24: 105–110CrossRefGoogle Scholar
  49. 49.
    Toutain J, Meyer G. Iridium-bearing sublimates at the hot-spot volcano (Piton de la Fournaise, Indian Ocean). Geophys Res Lett, 1989, 16: 1391–1394CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  • ZiKui Zhao
    • 1
    Email author
  • XueYing Mao
    • 2
  • ZhiFang Chai
    • 2
  • GaoChuang Yang
    • 2
  • FuCheng Zhang
    • 1
  • Zheng Yan
    • 3
  1. 1.Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
  2. 2.Institute of High Energy Physics and Laboratory of Nuclear Analytical TechniquesChinese Academy of SciencesBeijingChina
  3. 3.Institute of GeologyState Seismological BureauBeijingChina

Personalised recommendations