Skip to main content
Log in

The low-velocity layer at the depth of 620 km beneath Northeast China

  • Articles/Geophysics
  • Published:
Chinese Science Bulletin

Abstract

Based on the 3-D Earth model, the common convert points-phase weighted stacks (CCP-PWS) migration method is used to image the upper mantle discontinuities beneath Northeast China (longitude 120°–132°; latitude 38°–40°) with 802 observed receiver functions. Teleseismic records are obtained from 4 stations belonging to CCDSN and 19 stations belonging to PASSCAL. A low-velocity layer has been detected at the depth of 620 km. This low-velocity layer rises to 600 km in the east of the study region close to the subducted slab. We consider that this low-velocity layer might be the accumulated oceanic crustal material delaminated from the western Pacific subducted slab. Additionally, we detect the obvious depression of 660 km discontinuity which was attributed to the interaction between the upper mantle and subducted slab. The maximum depth of 660 km discontinuity approaches 700 km, and 660 km discontinuity splits into multiple discontinuities in the northeast of the study region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bina C, Helffrich G. Phase transition Clapyron slopes and transition zone seismic discontinuity topography. J Geophys Res, 1994, 99: 853–860

    Article  Google Scholar 

  2. Wu Q, Li Y, Zhang R, et al. Wavelet modeling of broadband receiver functions. Geophys J Int, 2007, 170: 534–544

    Article  Google Scholar 

  3. Wu Q J, Li Y, Zhang R, et al. Receiver functions from autoregressive deconvolution. Pure Appl Geophys, 2007, 164: 2175–2192

    Article  Google Scholar 

  4. Wu Q J, Zeng R S, Zhao W J. The upper mantle structure of the Tibetan Plateau and its implication for the continent-continent collision. Sci China Ser D-Earth Sci, 2005, 48(8): 1158–1164

    Article  Google Scholar 

  5. Shen Y, Blume J. Seismic evidence for accumulated oceanic crust above the 660-km discontinuity beneath southern Africa. Geophys Res Lett, 2003, 30(18), 1925, doi: 10.1029/2003GL017 991

    Article  Google Scholar 

  6. Irifune T, Ringwood A E. Phase transformation in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth Planet Sci Lett, 1993, 117: 101–110

    Article  Google Scholar 

  7. Ringwood A E. The pyroxene-garnet transformation in the Earth’s mantle. Earth Planet Sci Lett, 1967, 2: 255–263

    Article  Google Scholar 

  8. Anderson D L. Chemical stratification of the mantle. J Geophys Res, 1979, 84: 6297–6298

    Article  Google Scholar 

  9. van Keken P E, Karato S, Yuen D A. Rheological control of oceanic crust separation in the transition zone. Geophys Res Lett, 1996, 23: 1821–1824

    Article  Google Scholar 

  10. Karato S. On the separation of crustal component from subducted oceanic lithosphere near the 660 km discontinuity. Phys Earth Planet Int, 1997, 99: 103–111

    Article  Google Scholar 

  11. Gudmundsson O, Sambridge M. A regionalized upper mantle (RUM) seismic model. J Geophys Res, 1998, 103: 7121–7136

    Article  Google Scholar 

  12. Huang J, Zhao D. High-resolution mantle tomography of China and surrounding regions. J Geophys Res, 2006, 111 B09305, doi: 10.1029/2005JB004066

  13. Shen X Z, Zhou H L, Kawakatsu H. Mapping the upper mantle discontinuities beneath China with teleseismic receiver functions. Earth Planet Space, 2008, 60(7): 713–719

    Google Scholar 

  14. Niu F, Kawakatsu H. Complex structure of the mantle discontinuities at the tip of the subducting slab beneath the northeast China: a preliminary investigation of broadband receiver functions. J Phys Eart, 1996, 44: 701–711

    Google Scholar 

  15. Li X, Yuan X. Receiver functions in northeast China — implications for slab penetration into the lower mantle in northwest Pacific subduction zone. Earth Planet Sci Lett, 2003, 216: 679–691

    Article  Google Scholar 

  16. Lebedev S, Sébastien C, van der Hilst R. The 660-km discontinuity within the subducting NW-Pacific lithospheric slab. Earth Planet Sci Lett, 2002, 205: 25–35

    Article  Google Scholar 

  17. Ai Y, Zheng T, Xu W, et al. A complex 660 km discontinuity beneath northest China. Earth Planet Sci Lett, 2003, 212: 63–71

    Article  Google Scholar 

  18. Zhou Y Z, Zang S X. Mantle discontinuities beneath the stations MDJ and HIA and its implications. Chin J Geophys, 2001, 44(6): 748–759

    Google Scholar 

  19. Bassin C, Laske G, Masters G. The current limits of resolution for surface wave tomography in North America, EOS Trans AGU, 2000, 81: F897

    Google Scholar 

  20. Grand P S. Mantle shear-wave tomography and the fate of subducted slabs. Phil Trans R Soc Lond A, 2001, 360: 2475–2491

    Google Scholar 

  21. Ligorria J P, Ammon C J. Iterative deconvolution and receiver-function estimation. Bull Seismol Soc Am, 1999, 89: 1395–1400

    Google Scholar 

  22. Yuan X, Ni J, Kind R, et al. Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment. J Geophys Res, 1997, 102(B12): 27491–27500

    Article  Google Scholar 

  23. Kennett B L N, Engdahl E R. Travel times for global earthquake location and phase identification. Geophys J Int, 1991, 105: 429–465

    Article  Google Scholar 

  24. Efron B, Tibshirani R J. An Introduction to the Bootstrap. New York: Chapman and Hall, 1993

    Google Scholar 

  25. Sheriff R E. Nomogram for Fresnel-zone calculation. Geophysics, 1980, 45: 968–972

    Article  Google Scholar 

  26. Schimmel M, Paulssen H. Noise reduction and detection of weak, coherent signals through phase weighted stacks. Geophys J Int, 1997, 130: 497–505

    Article  Google Scholar 

  27. Crotwell H P, Owens T J, Ritsema J. The TauP Toolkit: Flexible seismic travel-time and ray-path utilities. Seismol Res Lett, 1999, 70: 154–160

    Google Scholar 

  28. Cassidy J F. Numerical experiments in broadband receiver function analysis. Bull Seismol Soc Am, 1992, 82: 1453–1474

    Google Scholar 

  29. Inoue T, Weidner D J, Northrup P A, et al. Elastic properties of hydrous ringwoodite (g-phase) in Mg2SiO4. Earth Planet Sci Lett, 1998, 160: 107–113

    Article  Google Scholar 

  30. Dziewonski A M, Anderson D L. Preliminary reference Earth model. Phys Earth Planet Int, 1981, 25: 297–356

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XuZhang Shen or HuiLan Zhou.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 40574024 and 40374009)

About this article

Cite this article

Shen, X., Zhou, H. The low-velocity layer at the depth of 620 km beneath Northeast China. Chin. Sci. Bull. 54, 3067–3075 (2009). https://doi.org/10.1007/s11434-008-0559-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0559-z

Keywords

Navigation