Skip to main content
Log in

EEG-based asynchronous BCI control of a car in 3D virtual reality environments

  • Articles/Neuroscience
  • Published:
Chinese Science Bulletin

Abstract

Brain computer interface (BCI) aims at creating new communication channels without depending on brain’s normal output channels of peripheral nerves and muscles. However, natural and sophisticated interactions manner between brain and computer still remain challenging. In this paper, we investigate how the duration of event-related desynchronization/synchronization (ERD/ERS) caused by motor imagery (MI) can be modulated and used as an additional control parameter beyond simple binary decisions. Furthermore, using the non-time-locked properties of sustained (de)synchronization, we have developed an asynchronous BCI system for driving a car in 3D virtual reality environment (VRE) based on cumulative incremental control strategy. The extensive real time experiments confirmed that our new approach is able to drive smoothly a virtual car within challenging VRE only by the MI tasks without involving any muscular activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nicolelis M A L. Actions from thoughts. Nature, 2001, 409(6818): 403–407

    Article  PubMed  CAS  Google Scholar 

  2. Wolpaw J R, Birbaumer N, McFarland D J, et al. Brain-computer interfaces for communication and control. Clin Neurophysiol, 2002, 113(6): 767–791

    Article  PubMed  Google Scholar 

  3. Dornhege G. Toward Brain-Computer Interfacing. Cambridge, MA: MIT Press, 2007

    Google Scholar 

  4. Serruya M, Hatsopoulos N, Paninski L, et al. Instant neural control of a movement signal. Nature, 2002, 416(6877): 141–2

    Article  PubMed  CAS  Google Scholar 

  5. Wessberg J, Stambaugh C R, Kralik J D, et al. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature, 2000, 408(6810): 361–365

    Article  PubMed  CAS  Google Scholar 

  6. Taylor D M, Tillery S I H, Schwartz A B. Direct cortical control of 3D neuroprosthetic devices. Science, 2002, 296(5574): 1829

    Article  PubMed  CAS  Google Scholar 

  7. Musallam S, Corneil B D, Greger B, et al. Cognitive control signals for neural prosthetics. Science, 2004, 305(5681): 258–262

    Article  PubMed  CAS  Google Scholar 

  8. Santhanam G, Ryu S I, Yu B M, et al. A high-performance braincomputer interface. Nature, 2006, 442(7099): 195–198

    Article  PubMed  CAS  Google Scholar 

  9. Chapin J K, Moxon K A, Markowitz R S, et al. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci, 1999, 2: 664–670

    Article  PubMed  CAS  Google Scholar 

  10. Müller K R, Blankertz B. Toward noninvasive brain-computer interfaces.IEEE Signal Processing Magazine, 2006, 23(5): 125–128

    Article  Google Scholar 

  11. Pfurtscheller G, Brunner C, Schlögl A, et al. Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage, 2006, 31(1): 153–159

    Article  PubMed  CAS  Google Scholar 

  12. Blankertz B, Dornhege G, Krauledat M, et al. The non-invasive berlin brain-computer interface: Fast acquisition of effective performance in untrained subjects. NeuroImage, 2007, 37(2): 539–550

    Article  PubMed  Google Scholar 

  13. Blankertz B, Tomioka R, Lemm S, et al. Optimizing spatial filters for robust EEG single-trial analysis. Signal Processing Magazine, 2008, IEEE, 25(1): 41–56

    Article  Google Scholar 

  14. Sitaram R, Zhang H, Guan C, et al. Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-Computer interface. NeuroImage, 2007, 34(4): 1416–1427

    Article  PubMed  Google Scholar 

  15. Birbaumer N, Ghanayim N, Hinterberger T, et al. A spelling device for the paralysed. Nature, 1999, 398(6725): 297–8

    Article  PubMed  CAS  Google Scholar 

  16. Pfurtscheller G, Neuper C, Muller G R, et al. Graz-BCI: State of the art and clinical applications. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(2): 1–4

    Article  Google Scholar 

  17. Wolpaw J R, McFarland D J, Bizzi E. Control of a Two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Natl Acad Sci USA, 2004, 101(51): 17849–17854

    Article  PubMed  CAS  Google Scholar 

  18. Wolpaw J R, McFarland D J, Vaughan T M, et al. The Wadsworth center brain-computer interface (BCI) research and development program. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(2): 1–4

    Article  Google Scholar 

  19. Muller K R, Krauledat M, Dornhege G, et al. Machine learning techniques for brain-computer interfaces. Biomed Tech, 2004, 49(1): 11–22

    Article  Google Scholar 

  20. Dornhege G, Blankertz B, Krauledat M, et al. Combined optimization of spatial and temporal filters for improving brain-computer interfacing. IEEE Trans Biomed Eng, 2006, 53(11): 2274–2281

    Article  PubMed  Google Scholar 

  21. Blankertz B, Dornhege G, Lemm S, et al. The berlin brain-computer interface: Machine learning based detection of user specific brain states. J Univ Comp Sci, 2006, 12(6): 581–607

    Google Scholar 

  22. Muller K R, Anderson C W, Birch G E. Linear and nonlinear methods for brain-computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(2): 165–169

    Article  PubMed  Google Scholar 

  23. Kamousi B, Liu Z, He B. Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005, 13(2): 166–171

    Article  PubMed  Google Scholar 

  24. Pfurtscheller G, Leeb R, Keinrath C, et al. Walking from thought. Brain Res, 2006, 1071(1): 145–152

    Article  PubMed  CAS  Google Scholar 

  25. Krepki R, Blankertz B, Curio G, et al. The berlin brain-computer interface (BBCI)-towards a new communication channel for online control in gaming applications. Multimedia Tools Appl, 2007, 33(1): 73–90

    Article  Google Scholar 

  26. Fetz E. Real-time control of a robotic arm by neuronal ensembles. Nat Neurosci, 1999, 2: 583–584

    Article  PubMed  CAS  Google Scholar 

  27. Donoghue J. Connecting cortex to machines: Recent advances in brain interfaces. Nat Neurosci, 2002, 5(suppl): 1085–1088

    Article  PubMed  CAS  Google Scholar 

  28. Pfurtscheller G, Lopes da Silva F. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol, 1999, 110(11): 1842–1857

    Article  PubMed  CAS  Google Scholar 

  29. Pfurtscheller G, Neuper C, Brunner C, et al. Beta rebound after different types of motor imagery in man. Neurosci Lett, 2005, 378(3): 156–159

    Article  PubMed  CAS  Google Scholar 

  30. Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined handmovement. IEEE Transact Neur Syst Rehabilit Eng, 2000, 8(4): 441–446

    Article  CAS  Google Scholar 

  31. Müller-Gerking J, Pfurtscheller G, Flyvbjerg H. Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin Neurophysiol, 1999, 110: 787–798

    Article  PubMed  Google Scholar 

  32. Wang Y, Zhang Z, Li Y, et al. BCI competition 2003-data set IV: An algorithm based on CSSD and FDA for classifying single-trial EEG. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1081–1086

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiQing Zhang.

Additional information

Supported by the National High-Tech Research Program of China (Grant No. 2006AA01Z125) and the National Basic Research Program of China (Grant No. 2005CB724301)

About this article

Cite this article

Zhao, Q., Zhang, L. & Cichocki, A. EEG-based asynchronous BCI control of a car in 3D virtual reality environments. Chin. Sci. Bull. 54, 78–87 (2009). https://doi.org/10.1007/s11434-008-0547-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0547-3

Keywords

Navigation