Skip to main content
Log in

Pulse gas alignment and AFM manipulation of single-wall carbon nanotube

  • Articles/Engineering Technology
  • Published:
Chinese Science Bulletin

Abstract

In the fabrication process of nanoelectronic device arrays based on single-wall carbon nanotube (SWCNT), oriented alignment of SWCNTs and property modification of metallic SWCNTs in the array are the key problems to be solved. Pulse gas alignment with substrate downward tilt is proposed to realize the controllable alignment of SWCNTs. Experimental results demonstrate that 84% SWCNTs are aligned in −15°−15° angular to the pulse gas direction. A modified nanomanipulation technology based on atomic force microscope (AFM) is utilized to perform various kinds of SWCNT manipulation, such as SWCNT separation from the “Y” CNT, catalyst removal from the SWCNT end, continual nano buckles fabrication on SWCNT and even stretching to break, which provides a feasible way to modify the size, shape and the electrical property of SWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1 nm diameter. Nature, 1993, 363: 603–604

    Article  CAS  Google Scholar 

  2. Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes-The route toward applications. Science, 2002, 297: 787–792

    Article  PubMed  CAS  Google Scholar 

  3. McEuen P L, Fuhrer M S, Park H K. Single-walled carbon nanotube electronics. IEEE Tran Nanotech, 2002, 1(1): 78–85

    Article  Google Scholar 

  4. Avouris P, Appenzeller J, Martel R, et al. Carbon nanotube electronics. J Proc IEEE, 2003, 91(11): 1172–1784

    Google Scholar 

  5. Dai H J, Javey A, Pop A, Mann D, et al. Electrical transport properties and field-effect transistors of carbon nanotubes. NANO Brief Rep Rev, 2006, 1(1): 1–4

    CAS  Google Scholar 

  6. Cheng C X, Zhang Y F. Multi-channel field effect transstor constructed by carbon nanotube. Sci Chin Ser E Eng & Mat Sci, 2005, 35(11): 1156–1165

    Google Scholar 

  7. Li P J, Zhang W J, Zhang Q F, et al. Nanoelectronic logic circuits with carbon nanotube transistors. Acta Phys Sin, 2007, 56(2): 1054–1060

    CAS  Google Scholar 

  8. Hu Y F, Yao K, Wang S, et al. Fabrication of high performance top-gate complementary inverter using a single carbon nanotube and via a simple process. Appl Phys Lett, 2007, 90: 223116–223118

    Article  Google Scholar 

  9. Huang S M, Cai X Y, Liu J. Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J Am Chem Soc, 2003, 125: 5636–5637

    Article  PubMed  CAS  Google Scholar 

  10. Han S, Liu X, Zhou C. Template-free directional growth of single-walled carbon nanotubes on a-and r-plane sapphire. J Am Chem, 2005, 127: 5294–5295

    Article  CAS  Google Scholar 

  11. Marcus D L, Novak J P, Snow E S. Simple route to large-scale ordered arrays of liquid-deposited carbon nanotubes. Nano Lett, 2004, 4(4): 603–606

    Article  Google Scholar 

  12. Yan Y H, Li S, Chen L Q, et al. Large-scale submicron horizontally aligned single-walled carbon nanotube surface arrays on various substrates produced by a fluidic assembly method. Nanotechnology, 2006, 17: 5696–5701

    Article  CAS  Google Scholar 

  13. Rao S G, Huang L, Setyawan W Y, et al. Large-scale assembly of carbon nanotubes. Nature, 2003, 425: 36–37

    Article  PubMed  CAS  Google Scholar 

  14. Huang L M, Cui X D, Dukovic G. Self-organizing high-density single-walled carbon nanotube arrays from surfactant suspensions. Nanotechnology, 2004, 15: 1450–1454

    Article  CAS  Google Scholar 

  15. Strobl C J, Schäflein C, Beierlein U. Carbon nanotube alignment by surface acoustic waves. Appl Phys Lett, 2004, 85: 1427–1429

    Article  CAS  Google Scholar 

  16. Chen Z, Yang Y L, Chen F, et al. Controllable interconnection of single-walled carbon nanotubes under AC electric field. J Phys Chem B, 2005, 109(23): 11420-11423

    Google Scholar 

  17. Yu G, Cao A, Lieber C M. Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat Nano, 2007, 2: 372–377

    Article  CAS  Google Scholar 

  18. Krupke R, Hennrich F, Lohneysen H V, et al. Separatin of metallic from semiconducting single walled carbon nanotubes. Science, 2003, 301: 344–347

    Article  PubMed  CAS  Google Scholar 

  19. Postma H W C, Teepen T, Yao Z, et al. Carbon nanotube single-electron transistors at room temperature. Science, 2001, 293: 76–79

    Article  PubMed  CAS  Google Scholar 

  20. Zhang Y J, Li P, Hu Y Z. Manipulation and cut of carbon nanotube. Chin Sci bull, 2002, 47(14): 1066–1070

    Google Scholar 

  21. Tian X J, Wang Y C, Xi N, et al., Study on single CNT’s accurate assembly and electrical contact for fabricating nanoelectronic device. J Chin Electr Micr Soc, 2006, 25(6): 490–493

    CAS  Google Scholar 

  22. Liu S J, Shen Z Y, Hou S M, et al. Study on the manipulation of carbon nanotubes with atomic force microscopy. Acta Physico-Chimica Sin, 2003, 3: 233–236

    Google Scholar 

  23. Postma H W C, Sellmeijer A, Dekker C. Manipulation and imaging of individual single-walled carbon nanotubes with an atomic force microscope. Adv Mater, 2000, 12(17): 1299–1302

    Article  CAS  Google Scholar 

  24. Zhang Y J, Li P, Hu Y Z, et al., Atomic force microscopic measurement of lateral pushing forces during nanomanipulation. J Tsinghua Univ (Sci Tech), 2004, 44(8): 1025–1028

    Google Scholar 

  25. Vigolo B, Penicaud A, Coulon C, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science, 2000, 290: 1331–1334

    Article  PubMed  CAS  Google Scholar 

  26. Li J Q, Zhang Q, Peng N, et al. Manipulation of carbon nanotubes using AC dielectrophoresis. Appl Phys Lett, 2005, 86: 153116–153118

    Article  Google Scholar 

  27. Tian X J, Wang Y C, Liu L Q, et al.. AFM based nanomanipulation system with 3D force feedback. Chin J Sci Instr, 2006, 27(7): 661–665

    Google Scholar 

  28. Cheng H M. Carbon nanotubes: synthesis, microstructure, properties and applications. Beijing: Chemical Industry Press, 2002

    Google Scholar 

  29. Bhushan B. Nanotribology and nanomechanics, In: Springer Handbook of Nanotechnology. Berlin: Springer Berlin Heidelberg, 2004

    Google Scholar 

  30. Larsson P, Larsson J A, Ahuja R, et al. Calculating carbon nanotube catalyst adhesion strengths. Phys Rev B, 2007, 75(11): 115419–115424

    Article  Google Scholar 

  31. Zhang X H, Lou P T, Zhang Z Q, et al. Studies on nanobubbles formed at solid/liquid interface. J Chin Electr Micro Soc, 2003, 22(2): 136–141

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoJun Tian.

Additional information

Supported by the National High Technology Research and Development Program (863 Program No. 2006AA04Z320) and Excellent Young Scholars Training Grant of Liaoning Province (Grant No. 2005220025)

About this article

Cite this article

Tian, X., Wang, Y., Xi, N. et al. Pulse gas alignment and AFM manipulation of single-wall carbon nanotube. Chin. Sci. Bull. 53, 3590–3596 (2008). https://doi.org/10.1007/s11434-008-0496-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0496-x

Keywords

Navigation