Skip to main content
Log in

Second organic aerosol formation by irradiation of α-pinene-NOx-H2O in an indoor smog chamber for atmospheric chemistry and physics

  • Articles/Environmental Sciences
  • Published:
Chinese Science Bulletin

Abstract

Ozone(O3) and secondary organic aerosol (SOA) are considered to be the most serious secondary air pollutants of concern in most metropolitan areas, as well as for Beijing. In this study, O3 and SOA formation potential of α-pinene, the most abundant biogenic VOCs, is investigated at Tsinghua Indoor Chamber Facility. The experiments were conducted under atmospheric relevant HCs/NOx ratios in both presence and absence of ammonia sulfate seed aerosol. A Scanning Mobility Particle Sizer system (3936, TSI) and a Condensation Particle Counter (3010, TSI) were used to study the SOA formation and a gas chromatograph (GC) equipped with a DB-5 column and a flame ionization detector (FID) was used to measure α-pinene simultaneously. The results show that the presence of ammonia sulfate seed aerosol did not change the formation trend of O3, but significantly contribute to SOA formation. A strong linear relationship (r 2 = 0.90) between SOA yield enhancement (ΔY*) and surface concentration of seed aerosol (PM i,s )has been found, denoting that the PM i,s is the control factor for SOA yield enhancement. And the possible reason for the enhancement is acid-catalyzed heterogeneous reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang W, Guo J H, Sun Y L, et al. Source apportionment for urban PM10 and PM2.5 in the Beijing area. Chin Sci Bull, 2007, 52(5): 608–615

    Article  CAS  Google Scholar 

  2. Xu Y F, Jia L, Ge M F, et al. A kinetic study of the reaction of ozone with ethylene in a smog chamber under atmospheric conditions. Chin Sci Bull, 2006, 51(23): 2839–2843

    Article  CAS  Google Scholar 

  3. Cocker D R, Flagan R C, Seinfeld J H. State-of-the-art chamber facility for studying atmospheric aerosol chemistry. Environ Sci Technol, 2001, 35(12): 2594–2601

    Article  PubMed  CAS  Google Scholar 

  4. Carter W P L, Cocker D R, Fitz D R, et al. A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation. Atmos Environ, 2005, 39(40): 7768–7788

    Article  CAS  Google Scholar 

  5. Du L, Xu Y F, Ge M F, et al. Rate constant for the reaction of ozone with diethyl sulfide. Atmos Environ, 2007, 41(35): 7434–7439

    Article  CAS  Google Scholar 

  6. Du L, Xu Y, Ge M F, et al. Experimental investigation of incremental reactivity of di-tert-butyl peroxide. Chin Sci Bul, 2007, 52(12): 1629–1634

    Article  CAS  Google Scholar 

  7. Verheggen B, Mozurkewich M, Caffrey P, et al. alpha-pinene oxidation in the presence of seed aerosol: Estimates of nucleation rates, growth rates, and yield. Environ Sci Technol, 2007, 41(17): 6046–6051

    Article  PubMed  CAS  Google Scholar 

  8. Northcross A L, Jang M. Heterogeneous SOA yield from ozonolysis of monoterpenes in the presence of inorganic acid. Atmos Environ, 2007, 41(7): 1483–1493

    Article  CAS  Google Scholar 

  9. Hao L Q, Wang Z Y, Huang M Q, et al. Effects of seed aerosols on the growth of secondary organic aerosols from the photooxidation of toluene. J Environ Sci-China, 2007, 19(6): 704–708

    PubMed  CAS  Google Scholar 

  10. Czoschke N M, Jang M S. Acidity effects on the formation of alpha-pinene ozone SOA in the presence of inorganic seed. Atmos Environ, 2006, 40(23): 4370–4380

    Article  CAS  Google Scholar 

  11. Lee S D, Jang M S, Kamens R M. SOA formation from the photooxidation of alpha-pinene in the presence of freshly emitted diesel soot exhaust. Atmos Environ, 2004, 38(16): 2597–2605

    Article  CAS  Google Scholar 

  12. Kleindienst T E, Smith D F, Li W, et al. Secondary organic aerosol formation from the oxidation of aromatic hydrocarbons in the presence of dry submicron ammonium sulfate aerosol. Atmos Environ, 1999, 33(22): 3669–3681

    Article  CAS  Google Scholar 

  13. Jang M, Czoschke N M, Northcross A L, et al. SOA formation from partitioning and heterogeneous reactions: Model study in the presence of inorganic species. Environ Sci Technol, 2006, 40(9): 3013–3022

    Article  PubMed  CAS  Google Scholar 

  14. Cocker D R, Clegg S L, Flagan R C, et al. The effect of water on gas-particle partitioning of secondary organic aerosol. Part I: Alpha-pinene/ozone system. Atmos Environ, 2001, 35(35): 6049–6072

    Article  CAS  Google Scholar 

  15. Czoschke N M, Jang M. Markers of heterogeneous reaction products in alpha-pinene ozone secondary organic aerosol. Atmos Environ, 2006, 40(29): 5629–5639

    Article  Google Scholar 

  16. Jang M S, Czoschke N M, Northcross A L. Semiempirical model for organic aerosol growth by acid-catalyzed heterogeneous reactions of organic carbonyls. Environ Sci Technol, 2005, 39(1): 164–174

    Article  PubMed  CAS  Google Scholar 

  17. Jang M, Czoschke N M, Northcross A L. Atmospheric organic aerosol production by heterogeneous acid-catalyzed reactions. Chemphyschem, 2004, 5(11): 1647–1661

    Article  PubMed  Google Scholar 

  18. Jang M S, Carroll B, Chandramouli B, et al. Particle growth by acid-catalyzed heterogeneous reactions of organic carbonyls on preexisting aerosols. Environ Sci Technol, 2003, 37(17): 3828–3837

    Article  PubMed  CAS  Google Scholar 

  19. Czoschke N M, Jang M, Kamens R M. Effect of acidic seed on biogenic secondary organic aerosol growth. Atmos Environ, 2003, 37(30): 4287–4299

    Article  CAS  Google Scholar 

  20. Shan Wu, Lu Z F, Hao J M, et al. Construction and characterization of an atmospheric simulation smog chamber. Adv Atmos S, 2007, 24(2): 250–258

    Article  Google Scholar 

  21. Takekawa H, Minoura H, Yamazaki S. Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons. Atmos Environ, 2003, 37(24): 3413–3424

    Article  CAS  Google Scholar 

  22. Sheehan P E, Bowman F M. Estimated effects of temperature on secondary organic aerosol concentrations. Environ Sci Technol, 2001, 35(11): 2129–2135

    Article  PubMed  CAS  Google Scholar 

  23. Ansari A S, Pandis S N. Water absorption by secondary organic aerosol and its effect an inorganic aerosol behavior. Environ Sci Technol, 2000, 34(1): 71–77

    Article  CAS  Google Scholar 

  24. Cocker D R, Mader B T, Kalberer M, et al. The effect of water on gas-particle partitioning of secondary organic aerosol: II. m-xylene and 1,3,5-trimethylbenzene photooxidation systems. Atmos Environ, 2001, 35(35): 6073–6085

    Article  CAS  Google Scholar 

  25. Edney E O, Driscoll D J, Speer R E, et al. Impact of aerosol liquid water on secondary organic aerosol yields of irradiated toluene/propylene/NOx/(NH4)2SO4/air mixtures. Atmos Environ, 2000, 34(23): 3907–3919

    Article  CAS  Google Scholar 

  26. Song C, Na K S, Cocker D R. Impact of the hydrocarbon to NOx ratio on secondary organic aerosol formation. Environ Sci Technol, 2005, 39(9): 3143–3149

    Article  PubMed  CAS  Google Scholar 

  27. Bowman F M, Karamalegos A M. Estimated effects of composition on secondary organic aerosol mass concentrations. Environ Sci Technol, 2002, 36(12): 2701–2707

    Article  PubMed  CAS  Google Scholar 

  28. Brooks S D, Wise M E, Cushing M, et al. Deliquescence behavior of organic/ammonium sulfate aerosol. Geophys R L, 2002, 29(19): 1917–1920

    Article  Google Scholar 

  29. Pankow J F. An absorption-model of the gas aerosol partitioning involved in the formation of secondary organic aerosol. Atmos Environ, 1994, 28(2): 189–193

    Article  CAS  Google Scholar 

  30. Pankow J F. An absorption-model of gas-particle partitioning of organic-compounds in the atmosphere. Atmos Environ, 1994, 28(2): 185–188

    Article  CAS  Google Scholar 

  31. Odum J R, Hoffmann T, Bowman F, et al. Gas/particle partitioning and secondary organic aerosol yields. Environ Sci Technol, 1996, 30(8): 2580–2585

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiMing Hao.

Additional information

Supported by Toyota Central R&D Labs., Inc. (as part of “Study of Photochemical Reaction under High PM Contaminated Condition to Improve Air Quality of Beijing”), and the National Natural Science Foundation of China (Grant No. 20637001)

About this article

Cite this article

Zhao, Z., Hao, J., Li, J. et al. Second organic aerosol formation by irradiation of α-pinene-NOx-H2O in an indoor smog chamber for atmospheric chemistry and physics. Chin. Sci. Bull. 53, 3294–3300 (2008). https://doi.org/10.1007/s11434-008-0478-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0478-z

Keywords

Navigation