Skip to main content
Log in

Isotropic negative permeability composite based on Mie resonance of the BST-MgO dielectric medium

  • Articles/Condendsed State Physics
  • Published:
Chinese Science Bulletin

Abstract

Isotropic negative permeability composite, composed of BST-MgO dielectric cubes with high permittivity dispersed in the Teflon substrate with low permittivity, was designed and fabricated based on Mie resonance and the effective medium theory. Measurements and simulations showed that the dielectric composite exhibited a strong sub-wavelength magnetic resonance at the first Mie resonance and possessed isotropic negative permeability, which resulted from the displacement current excited in the cubes. The dielectric particle was equivalent to a magnetic dipole at the magnetic resonance, which could be adjusted by the size and permittivity of the particles. It may provide a convenient method to design isotropic metamaterials and invisible cloak at infrared and visible frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shalaev V M. Optical negative-index metamaterials. Nat Photon, 2007, 1: 41–48

    Article  CAS  Google Scholar 

  2. Veselago V G, Narimanov E E. The left hand of brightness: Past, present and future of negative index materials. Nat Mater, 2006, 5(10): 759–762

    Article  PubMed  CAS  Google Scholar 

  3. Pendry J. Metamaterials in the sunshine. Nat Mater, 2006, 5(8): 599–600

    Article  PubMed  CAS  Google Scholar 

  4. Shelby R, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79

    Article  PubMed  CAS  Google Scholar 

  5. Huangfu J, Ran L, Chen H, et al. Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns. Appl Phys Lett, 2004, 84(9): 1537–1539

    Article  CAS  Google Scholar 

  6. Dolling G, Enkrich C, Wegener M, et al. Low-loss negative-index metamaterial at telecommunication wavelengths. Opt Lett, 2006, 31(12): 1800–1802

    Article  PubMed  CAS  Google Scholar 

  7. Zhou X, Fu Q H, Zhao J, et al. Negative permeability and subwavelength focusing of quasi-periodic dendritic cell metamaterials. Opt Express, 2006, 14(16): 7188–7197

    Article  Google Scholar 

  8. Pendry J B, Holden A J, Robbins D J. Magnetism from conductors and enhanced non-linear phenomena. IEEE Trans Microwave Theory Tech, 1999, 47(11): 2075–2084

    Google Scholar 

  9. Zhao Q, Kang L, Du B, et al. Electrically tunable negative permeability metamaterials based on nematic liquid crystals. Appl Phys Lett, 2007, 90(1): 011112

    Article  Google Scholar 

  10. Wheeler M S, Aitchison J S, Mojahedi M. Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies. Phys Rev B, 2005, 72(19): 193103

    Article  Google Scholar 

  11. Yannopapas V, Moroz A. Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges. J Phys: Condens Matter, 2005, 17(25): 3717–3734

    Article  CAS  Google Scholar 

  12. Vendik O G, Gashinova M S. Artificial double negative (DNG) media composed by two different dielectric sphere lattices embedded in a dielectric matrix. In: Proceedings of the 34th European Microwave Conference, Amsterdam. Piscataway, NJ: IEEE Press, 2004. 1209–1212

    Google Scholar 

  13. Huang K C, Povinelli M L, Joannopoulos J D. Negative effective permeability in polaritonic photonic crystals. Appl Phys Lett, 2004, 85(4): 543–545

    Article  CAS  Google Scholar 

  14. Peng L, Ran L, Chen H, et al. Experimental observation of left-handed behavior in an array of standard dielectric resonators. Phys Rev Lett, 2007, 98(15): 157403

    Article  PubMed  Google Scholar 

  15. Lewin L. The electrical constants of a material loaded with spherical particles. Proc Inst Electr Eng, 1947, 94(3): 65–68

    Google Scholar 

  16. Holloway C L, Kuester E F, Baker-Jarvis J, et al. A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix. IEEE Trans Antennas Propag, 2003, 51(10): 2596–2603

    Article  Google Scholar 

  17. Chen X, Grzegorczyk T M, Wu B, et al. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E, 2004, 70(1): 016608

    Article  Google Scholar 

  18. Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett, 2000, 84(18): 4184–4187

    Article  PubMed  CAS  Google Scholar 

  19. Chen H T, Padilla W J, Zide J M O, et al. Active terahertz metamaterial devices. Nature, 2006, 444(7119): 597–600

    Article  PubMed  CAS  Google Scholar 

  20. Chen H, Wu B, Ran L, et al. Controllable left-handed metamaterial and its application to a steerable antenna. Appl Phys Lett, 2006, 89(5): 053509

    Article  Google Scholar 

  21. Zhao Q, Kang L, Li B, et al. Tunable negative refraction in nematic liquid crystals. Appl Phys Lett, 2006, 89(22): 221918

    Article  Google Scholar 

  22. Kang L, Zhao Q, Li B, et al. Experimental verification of a tunable optical negative refraction in nematic liquid crystals. Appl Phys Lett, 2007, 90(18): 181931

    Article  Google Scholar 

  23. Zhao H J, Zhou J, Zhao Q, et al. Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires. Appl Phys Lett, 2007, 91(13): 131107

    Article  Google Scholar 

  24. Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Zhou.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 50425204, 50632030, 60608016, 10774087) and the State Key Laboratory of Tribology (Grant No. SKLT 08B12)

About this article

Cite this article

Zhao, Q., Kang, L., Du, B. et al. Isotropic negative permeability composite based on Mie resonance of the BST-MgO dielectric medium. Chin. Sci. Bull. 53, 3272–3276 (2008). https://doi.org/10.1007/s11434-008-0475-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0475-2

Keywords

Navigation