Skip to main content
Log in

Theoretical study on photophysical property of C60M(CO)5 (M=Cr, Mo and W)

  • Articles/Physical Chemistry
  • Published:
Chinese Science Bulletin

Abstract

Configurations of three η 2 models of transition-metal [60]fullerene derivatives C60M(CO)5 (M=Cr, Mo and W) have been optimized at B3LYP/LanL2DZ level. On the basis of the optimized geometrical structures, their electronic spectra and the frequency dependence of third-order nonlinear optical polarizabilities γ in different optical processes of third-harmonic generation (THG), electric-field-induced second-harmonic generation (EFISHG) and degenerate four-wave mixing (DFWM) are calculated by using TDB3LYP model based on LanL2DZ level coupled with the SOS (sum-over-state) method. The obtained results show that their electronic spectra have a red shift compared with that of [60]fullerene and different transition-metal functional groups added to C60 cage may result in different spectrum properties. For the three studied species, (η 2-C60)Mo(CO)5 has the largest third-order nonlinear optical polarizability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balch A L, Olmstead M M. Reactions of transition metal complexes with fullerenes (C60, C70, etc.) and related materials. Chem Rev, 1998, 98(6): 2123–2166

    Article  PubMed  CAS  Google Scholar 

  2. Sokolov V I. Fullerenes coordinated to transition metals: Synthetic and stereochemical study. Pure Appl Chem, 1998, 70(4): 789–798

    Article  CAS  Google Scholar 

  3. Campanera J M, Munoz J, Vazquez J, et al. Organometallic derivatives of fullerenes: A DFT study of (η 2-Cx){Pt(PH3)2}n(x = 60,70,84; n=1–6). Inorg Chem, 2004, 43(21): 6815–6821

    Article  PubMed  CAS  Google Scholar 

  4. Thompson D M, Brownie J H, Baird M C. Spectroscopic evidence for anionic coordination complexes of the transition metals with C70 and the higher fullerenes C76, C78, C82, C84, C86, C90 and C92. Fullerenes Nanotubes Carbon Nanostruct, 2004, 12(3): 697–713

    Article  CAS  Google Scholar 

  5. Ocasio-Delgado Y, Rivera-Rivera L A, Crespo-Roman G, et al. Site of bond breaking in mer-(dihapto-[60]fullerene) (dihapto-1,2-bis-diphenylphosphino) ethane tricarbonyl tungsten(0). Inorg React Mech, 2003, 5(1): 13–19

    CAS  Google Scholar 

  6. Jemmis E D, Manoharan M, Sharma P K. Exohedral η5 and η6 transition-metal organometallic complexes of C60 and C70: A theoretical study. Organometallics, 2000, 19(10): 1879–1887

    Article  CAS  Google Scholar 

  7. Ivanova V N. Fullerene compounds with transition metals MnC60: Preparation, structure, and properties. J Struct Chem, 2000, 41(1): 135–148

    Article  CAS  Google Scholar 

  8. Song L C, Su F H, Wang L X, et al. Synthesis, characterization, and electrochemical properties of mono-, di-, and trinuclear transition metal [60]fullerene complexes containing diphosphine cis-Ph2PCH = CHPPh2 ligand. J Nanosci Nanotechnol, 2007, 7(4): 1395–1400

    Article  PubMed  CAS  Google Scholar 

  9. Batista R J C, Mazzoni M S C, Chacham H. Boron nitride fullerene B36N36 doped with transition metal atoms: First-principles calculations. Phys Rev B, 2007, 75(3): 035417

    Article  Google Scholar 

  10. Fagan P J, Calabrese J C, Malone B. The chemical nature of buck-minsterfullerene and the characterization of a platinum derivative. Science, 1991, 252: 1160–1161

    CAS  Google Scholar 

  11. Song L C, Liu J T, Hu Q M, et al. Synthesis, characterization, and electrochemical properties of organotransition metal fullerene derivatives containing dppf ligands: Crystal structures of fac-Mo(CO)3(dppf)(CH3CN), W(CO)4(dppf), and mer-W(CO)3(dppf)(η 2-C60). Organometallics, 2000, 19(25): 5342–5351

    Article  CAS  Google Scholar 

  12. Song L C, Liu J T, Hu Q M, et al. Synthesis and crystal structures of two isomerically pure organotransition-metal [60]fullerene derivatives containing dppb ligands: mer-M(CO)3(dppb)(η 2-C60)(M=Mo, W). Organometallics, 2000, 19(9): 1643–1647

    Article  CAS  Google Scholar 

  13. Song L C, Liu P C, Liu J T, et al. Synthesis, characterization and electrochemical properties of optically active [60]fullerene organotransition metal complexes mer-[(η2-C60)M(CO)3{(−)-DIOP}] (M = Mo, W), mer-[(η2-C60)M(CO)3{(+)-DIOP}] (M = Mo, W) and [(η2-C60)M{(−)-DIOP}] (M = Pd, Pt)-crystal structure of [(η2-C60)Pt{(−)-DIOP}]. Eur J Inorg Chem, 2003, (17): 3201–3210

  14. Igartua-Nieves E, Ocasio-Delgado Y, Torres-Castillo M D L A, et al. Electrochemistry and [60]fullerene displacement reactions of (dihapto-[60]fullerene) pentacarbonyl metal (0) (M=Cr, Mo, W). Dalton Trans, 2007, (13): 1293–1299

  15. Xie R H, Rao Q. Third-order optical nonlinearities of chiral graphene tubules. Chem Phys Lett, 1999, 313(2): 211–216

    Article  CAS  Google Scholar 

  16. Xie R H. Large third-order optical nonlinearities in boron-or nitrogen-doped zigzag nanotube. Chem Phys Lett, 1999, 310(4): 379–384

    Article  CAS  Google Scholar 

  17. Li X D, Cheng W D, Wu D S, et al. Theoretical studies on the photophysical properties of hexapyrrolidine C60 adducts with Th, D3 and S6 symmetries. J Phys Chem B, 2005, 109(12): 5574–5579

    Article  PubMed  CAS  Google Scholar 

  18. Li X D, Cheng W D, Wu D S, et al. Theoretical study of molecular and photophysical properties of [5,6]-open C60 derivatives. J Mol Struct (Theochem), 2005, 718(2): 111–116

    Article  CAS  Google Scholar 

  19. Cheng W D, Wu D S, Li X D, et al. Design of single-walled carbon nanotubes with a large two-photon absorption cross section. Phys Rev B, 2004, 70(15): 155401

    Article  Google Scholar 

  20. Qian W, Lin L, Xia Z J, et al. Measurement of third-order optical nonlinearity of C60M2(M=Pd, Pt, and Sm) organometallic compounds by the femtosecond optically heterodyned optical Kerr effect. Chem Phys Lett, 2000, 319(1): 89–94

    Article  CAS  Google Scholar 

  21. Wang S F, Huang W T, Liang R S, et al. Transient nonlinear optics of organometallic fullerene: Research on iron(III) and ruthenium(III) derivatives of C60. J Phys Chem B, 2001, 105(44): 10784–10787

    Article  CAS  Google Scholar 

  22. Frisch M J, Trucks G W, Schlegel H B, et al. GAUSSIAN98, Gaussian, Inc., Pittsburgh PA, 1998

    Google Scholar 

  23. Becke A D. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 985(7): 5648–5652

    Article  Google Scholar 

  24. Dunning Jr T H, Hay P J. Modern Theoretical Chemistry, New York: Plenum, 1976. 1

    Google Scholar 

  25. Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys, 1985, 82(1): 270–283

    Article  CAS  Google Scholar 

  26. Wadt W R, Hay P J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys, 1985, 82(1): 284–298

    Article  CAS  Google Scholar 

  27. Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys, 1985, 82(1): 299–310

    Article  CAS  Google Scholar 

  28. Stratmann R E, Scuseria G E, Frisch M J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys, 1998, 109(19): 8218–8224

    Article  CAS  Google Scholar 

  29. Bauemschmitt R, Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett, 1996, 256(4): 454–464

    Article  Google Scholar 

  30. Casida M E, Jamorski C, Casida K C, et al. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys, 1998, 108(11): 4439–4449

    Article  CAS  Google Scholar 

  31. Orr B J, Ward J F. Perturbation theory of the non-linear optical polarization of an isolated system. Mol Phys, 1971, 20(3): 513–526

    Article  CAS  Google Scholar 

  32. Pierce B M. A theoretical analysis of third-order nonlinear optical properties of linear polyenes and benzene. J Chem Phys, 1989, 91(2): 791–811

    Article  CAS  Google Scholar 

  33. Li X D, Cheng W D, Wu D S, et al. Theoretical studies on photophysical properties of fullerene and its two derivatives (C60, C60COOCH2, C60COOHCH3). Chem Phys Lett, 2003, 380(4): 480–485

    Article  CAS  Google Scholar 

  34. Liu C L, Zhao G Z, Gong Q H, et al. Optical limiting property of molybdenum complex of fullerene C70. Opt Commun 2000, 184(4): 309–313

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoDong Li.

Additional information

Supported by the Startup Fund for Outstanding Persons of Nanjing Normal University (Grant No. 2005103XGQ2B83)

About this article

Cite this article

Li, X. Theoretical study on photophysical property of C60M(CO)5 (M=Cr, Mo and W). Chin. Sci. Bull. 53, 3281–3286 (2008). https://doi.org/10.1007/s11434-008-0465-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0465-4

Keywords

Navigation