Skip to main content
Log in

Proteomic analysis of long-term salinity stress-responsive proteins in Thellungiella halophila leaves

  • Articles/Plant Genetics
  • Published:
Chinese Science Bulletin

Abstract

Salinity is one of the most severe environmental factors that may impair crop productivity. A proteomic study based on two-dimensional gel electrophoresis is performed in order to analyze the long-term salinity stress response of Thellungiella halophila, an Arabidopsis-related halophyte. Four-week-old seedlings are exposed to long-term salinity treatment. The total crude proteins are extracted from leaf blades, separated by 2-DE, stained with Coomassie Brilliant Blue, and differentially displayed spots are identified by MALDI-TOF MS or QTOF MS/MS. Among 900 protein spots reproducibly detected on each gel, 30 spots exhibit significant change and some of them are identified. The identified proteins include not only some previously characterized stress-responsive proteins such as TIR-NBS-LRR class disease resistance protein, ferritin-1, and pathogenesis-related protein 5, but also some proteins related to energy pathway, metabolism, RNA processing and protein degradation, as well as proteins with unknown functions. The possible functions of these proteins in salinity tolerance of T. halophila are discussed and it is suggested that the long-term salinity tolerance of T. halophila is achieved, at least partly, by enhancing defense system, adjusting energy and metabolic pathway and maintaining RNA structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flowers T J, Yeo A R. Breeding for salinity resistance in crop plants: Where next? Aust J Plant Physiol, 1995, 22(6): 875–884

    Article  Google Scholar 

  2. Bressan R A, Zhang C, Zhang H, et al. Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiol, 2001, 127(4): 1354–1360

    Article  PubMed  CAS  Google Scholar 

  3. Inan G, Zhang Q, Li P, et al. Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol, 2004, 135(3): 1718–1737

    Article  PubMed  CAS  Google Scholar 

  4. Wang Z, Li P, Fredricksen M, et al. Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Sci, 2004, 166(3): 609–616

    Article  CAS  Google Scholar 

  5. Wong C E, Li Y, Whitty B R, et al. Expressed sequence tags from the Yukon ecotype of Thellungiella reveal that gene expression in response to cold, drought and salinity shows little overlap. Plant Mol Biol, 2005, 58(4): 561–574

    Article  PubMed  CAS  Google Scholar 

  6. Gong Q, Li P, Ma S, et al. Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J, 2005, 44(5): 826–839

    Article  PubMed  CAS  Google Scholar 

  7. Li P, Mane S P, Sioson A A. et al. Effects of chronic ozone exposure on gene expression in Arabidopsis thaliana ecotypes and in Thellungiella halophila. Plant Cell Environ, 2005, 29(5): 854–868

    Article  CAS  Google Scholar 

  8. Taji T, Seki M, Satou M, et al. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol, 2004, 135(3): 1697–1709

    Article  PubMed  CAS  Google Scholar 

  9. Wong C E, Li Y, Labbe A, et al. Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol, 2006, 140(4): 1437–1450

    Article  PubMed  CAS  Google Scholar 

  10. Volkov V, Amtmann A. Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specific root ion-channel features. Plant J, 2006, 48(3): 342–353

    Article  PubMed  CAS  Google Scholar 

  11. Pradet-Balade B, Boulme F, Beug H, et al. Translation control: bridging the gap between genomics and proteomics? Trends Biochem Sci, 2001, 26(4): 225–229

    Article  PubMed  CAS  Google Scholar 

  12. Zivy M, de Vienne D. Proteomics: A link between genomics, genetics and physiology. Plant Mol Biol, 2000, 44(5): 575–580

    Article  PubMed  CAS  Google Scholar 

  13. Kim D W, Rakwal R, Agrawal G K, et al. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis, 2005, 26(23): 4521–4539

    Article  PubMed  CAS  Google Scholar 

  14. Askari H, Edqvist J, Hajheidari M, et al. Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics, 2006, 6(8): 2542–2554

    Article  PubMed  CAS  Google Scholar 

  15. Yan S, Tang Z, Su W, et al. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics, 2005, 5(1): 235–244

    Article  PubMed  CAS  Google Scholar 

  16. Jiang Y, Yang B, Harris N S, et al. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot, 2007, 58(13): 3591–3607

    Article  PubMed  CAS  Google Scholar 

  17. Taylor N L, Heazlewood J L, Day D A, et al. Differential impact of environmental stresses on the pea mitochondrial proteome. Mol Cell Proteomics, 2005, 4(8): 1122–1133

    Article  PubMed  CAS  Google Scholar 

  18. Bray E A. Classification of genes differentially expressed during water deficit stress in Arabidopsis thaliana: An analysis using microarray and differential expression data. Ann Bot (Lond), 2002, 89(7): 803–811

    Article  CAS  Google Scholar 

  19. Foyer C H, Lelandais M, Kunert K J. Photooxidative stress in plants. Physiol Plant, 1994, 92(4): 696–717

    Article  CAS  Google Scholar 

  20. Deak M, Horvath G V, Davletova S, et al. Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens. Nat Biotechnol, 1999, 17(2): 192–196

    Article  PubMed  CAS  Google Scholar 

  21. Murgia I, Briat J F, Tarantino D. Plant ferritin accumulates in response to photoinhibition but its ectopic overexpression does not protect against photoinhibition. Plant Physiol Biochem, 2001, 39(9): 797–805

    Article  CAS  Google Scholar 

  22. Seo P J, Lee A K, Xiang F, et al. Molecular and functional profiling of Arabidopsis pathogenesis-related genes: Insights into their roles in salt response of seed germination. Plant Cell Physiol, 2008, 49(3): 334–344

    Article  PubMed  CAS  Google Scholar 

  23. Amme S, Matros A, Schlesier B, et al. Proteome analysis of cold stress response in Arabidopsis thaliana using DIGE-technology. J Exp Bot, 2006, 57(7): 1537–1546

    Article  PubMed  CAS  Google Scholar 

  24. Yan S, Zhang Q, Tang Z, et al. Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics, 2006, 5(3): 484–496

    PubMed  CAS  Google Scholar 

  25. Imin N, Kerim T, Rolfe B G, et al. Effect of early cold stress on the maturation of rice anthers. Proteomics, 2004, 4(7): 1873–1882

    Article  PubMed  CAS  Google Scholar 

  26. Ndimba B K, Chivasa S, Simon W J, et al. Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics, 2005, 5(16): 4185–4196

    Article  PubMed  CAS  Google Scholar 

  27. Kav N N V, Srivastava S, Goonewardene L, et al. Proteome-level changes in the roots of Pisum sativum in response to salinity. Ann Appl Biol, 2004, 145(2): 217–230

    Article  CAS  Google Scholar 

  28. Russell D A, Sachs M M. Differential expression and sequence analysis of the maize glyceraldehyde-3-phosphate dehydrogenase gene family. Plant Cell, 1989, 1(8): 793–803

    Article  PubMed  CAS  Google Scholar 

  29. Baek D, Jin Y, Jeong J C, et al. Suppression of reactive oxygen species by glyceraldehyde-3-phosphate dehydrogenase. Phytochemistry, 2008, 69(2): 333–338

    Article  PubMed  CAS  Google Scholar 

  30. Dastoor Z, Dreyer J L. Potential role of nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase in apoptosis and oxidative stress. J Cell Sci, 2001, 114(9): 1643–1653

    PubMed  CAS  Google Scholar 

  31. Pilon-Smits E A, Hwang S, Mel Lytle C, et al. Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol, 1999, 119(1): 123–132

    Article  PubMed  CAS  Google Scholar 

  32. Alba M M, Pages M. Plant proteins containing the RNA-recognition motif. Trends Plant Sci, 1998, 3(6): 15–21

    Article  Google Scholar 

  33. Mousavi A, Hotta Y. Glycine-rich proteins: A class of novel proteins. Appl Biochem Biotechnol, 2005, 120(3): 169–174

    Article  PubMed  CAS  Google Scholar 

  34. Sachetto-Martins G, Franco L O, de Oliveira D E. Plant glycine-rich proteins: A family or just proteins with a common motif? Biochim Biophys Acta, 2000, 1492(1): 1–14

    PubMed  CAS  Google Scholar 

  35. Kim J S, Park S J, Kwak K J, et al. Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation. Nucleic Acid Res, 2007, 35(2): 506–516

    Article  PubMed  CAS  Google Scholar 

  36. Mauro S, Dainese P, Lannoye R, et al. Cold-resistant and cold-sensitive maize lines differ in the phosphorylation of the photosystem II subunit, CP29. Plant Physiol, 1997, 115(1): 171–180

    PubMed  CAS  Google Scholar 

  37. Yang P, Fu H, Walker J, et al. Purification of the Arabidopsis 26 S proteasome biochemical and molecular analyses revealed the presence of multiple isoforms. J Biol Chem, 2004, 279(8): 6401–6413

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to DaCheng He or GenFa Zhang.

Additional information

Supported by the National Basic Research and Development Program of China (Grant Nos. 2006CB100100, 2004CB117303), National Natural Science Foundation of China (Grants Nos. 30670203, 30570434), Beijing Municipal National Natural Science Foundation (Grant No. 5062021), CUN 985-3-3 and Open Fund of Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education of China.

About this article

Cite this article

Gao, F., Zhou, Y., Huang, L. et al. Proteomic analysis of long-term salinity stress-responsive proteins in Thellungiella halophila leaves. Chin. Sci. Bull. 53, 3530–3537 (2008). https://doi.org/10.1007/s11434-008-0455-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0455-6

Keywords

Navigation