Skip to main content
Log in

Macrocyclic compound as ionophores in lead(II) ion-selective electrodes with excellent response characteristics

  • Review/Physical Chemistry
  • Published:
Chinese Science Bulletin

Abstract

Macrocyclic compounds, such as crown ethers, azacrown ethers, thiacrown ethers, calixarenes and porphyrins, which act as ionophores in lead(II) ion-selective electrodes, are systematically summarized based on the latest literatures. The molecular structure characteristics of the ionophores are generalized. The modification regulations for the substituted ionophores are elaborated with the purpose of improving the response features of the lead(II) ion-selective electrodes assembled by them. It is pointed out that the introduction of pendant moieties which contain soft base coordination centers like N, S and P atoms is in favor of adjusting the cavity size and conformation of the macrocyclic compounds. Furthermore, there is synergic effect between the cavity and the donor sites of the ligand and thus the selective complexation of lead ions is easily realized, resulting in significant avoidance of the interference from other metal ions. The macrocyclic ionophore having the best response characteristics thus far was found to be N,N′-dimethylcyanodiaza-18-crown-6 with the detection limit of 7.0×10−8 (14.5 μg/L), which is one of the uncommon ionophores that can really eliminate the interference from silver and mercury ions. The selectivity coefficients of the ionophore for lead ions over other metal ions, such as alkali, alkaline earth and transition metal ions are in the order of 10−4 or smaller, where the selectivity coefficient of lead(II) over mercury(II) ions is much lower, down to 8.9×10−4. The structure design idea for high-performance ionophore is proposed according to present results. The incorporation of nitrogen atom, especially cyano group or thiocyano group or amino/imino groups, rather than thio atom alone could result in new excellent lead ionophores. The aborative design for metacyclophanes containing aromatic nitrogen atoms with the aim of creating excellent ionophores would also become a potential research trend. The lead(II) ion-selective electrodes have shown widely potential applications in the potentiometric titration, and flow injection potentiometry, and in the direct determination of lead in stack emissions of lead smelters, and assay of lead in rocks, particularly in the direct measurements of trace amount of lead(II) in human hair, blood, edible oil, food, water, and air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rzewuska A, Wojciechowski M, Bulska E, et al. Composite polyacrylate-poly(3,4-ethylenedioxythiophene) membranes for improved all-solid-state ion-selective sensors. Anal Chem, 2008, 80(1): 321–327

    Article  PubMed  CAS  Google Scholar 

  2. Singh J D, Maheshwari M, Khan S, et al. Sterically encumbered hexakis(alkylseleno) benzenes: conformational behavior of hexakis(iso-propylselenomethyl)benzene toward Hg2+ ions on selective recognition. Tetrahedron Lett, 2008, 49: 117–121

    Article  CAS  Google Scholar 

  3. Malon A, Vigassy T, Bakker E, et al. Potentiometry at trace levels in confined samples: ion-selective electrodes with subfemtomole detection limits.J Am Chem Soc, 2006, 128(25): 8154–8155

    Article  PubMed  CAS  Google Scholar 

  4. Ganjali M R, Norouzi P, Faridbod F, et al. One decade of research on ion-selective electrodes in iran (1996–2006). J Iran Chem Soc, 2007, 4(1): 1–29

    CAS  Google Scholar 

  5. Krakowiak K E, Bradshaw J S, Zamecka-Krakowiak D J. Synthesis of aza-crown ethers. Chem Rev, 1989, 89: 929–972

    Article  CAS  Google Scholar 

  6. Srirastava S K, Gupta U K, Jain S. Determination of lead using a PVC-based crown-ether membrane. Analyst, 1995,120: 495–498

    Article  Google Scholar 

  7. Sheen S R, Shih J S. Lead(II) ion-selective electrodes based on crown ethers. Analyst, 1992, 117: 1691–1695

    Article  CAS  Google Scholar 

  8. Pouretedal H R, Keshavarz M H. Lead (II)-selective electrode based on dibenzodiaza-15-crown-4. Asian J Chem, 2004, 16(3–4): 1319–1326

    CAS  Google Scholar 

  9. Ganjali M R, Rouhollahi A, Mardan A R, et al. Lead ion-selective electrode based on 4’-vinylbenzo-15-crown-5 homopolymer. Microchem J, 1998, 60: 122–133

    Article  CAS  Google Scholar 

  10. Su C C, Chang M C, Liu L K. New Ag+-and Pb2+-selective electrodes with lariat crown ethers as ionophores. Anal Chim Acta, 2001, 432: 261–267

    Article  CAS  Google Scholar 

  11. Tavakkoli N, Shamsipur M. Lead selective electrode membrane based on dibenzopyridino-18-crown-6. Anal Lett, 1996, 29(13): 2269–2279

    CAS  Google Scholar 

  12. Mousavi M F, Sahari S, Alizadeh N, et al. Lead ion-selective membrane electrode based on 1,10-dibenzyl-1,10-diaza-18-crown-6. Anal Chim Acta, 2000, 414: 189–194

    Article  CAS  Google Scholar 

  13. Yang X H, Kumar N, Chi H, et al. Lead-selective membrane electrodes based on dithiophene diazacrown ether derivatives. Electroanalysis, 1997, 9(7): 549–553

    Article  CAS  Google Scholar 

  14. Gupta V K, Jain A K, Kumar P. PVC-based membranes of N,N′-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane as Pb(II)-selective sensor. Sens Actuators B, 2006, 120: 259–265

    Article  CAS  Google Scholar 

  15. Luboch E, Wagner-Wysiecka E, Fainerman-Melnikova M, et al. Pyrrole azocrown ethers. Synthesis, complexation, selective lead transport and ion-selective membrane electrode studies. Supramol Chem, 2006, 18(7): 593–601

    Article  CAS  Google Scholar 

  16. Yang X H, Kumar N, Hibbert D B, et al. Lead(II)-selective membrane electrodes based on 4,7,13,16-tetrathenoyl-1,10-dioxa-4,7,13,16-tetraazacyclooctadecane. Electroanalysis, 1998, 10(12): 827–831

    Article  CAS  Google Scholar 

  17. Shamsipur M, Ganjali M R, Roihollahi A. Lead-selective membrane potentiometric sensor based on an 18-membered thiacrown derivative. Anal Sci, 2001, 17: 935–938

    Article  PubMed  CAS  Google Scholar 

  18. Ganjali M R, Hosseini M, Basiripour F, et al. Novel coated-graphite membrane sensor based on N,N′-dimethylcyanodiaza-18-crown-6 for the determination of ultra-trace amounts of lead. Anal Chim Acta, 2002, 464: 181–186

    Article  CAS  Google Scholar 

  19. Zareh M M, Ghoneom A K, El-Aziz M H A. Effect of presence of 18-crown-6 on the response of 1-pyrrolidine dicarbodithioate-based lead selective electrode. Talanta, 2001, 54: 1049–1057

    Article  CAS  PubMed  Google Scholar 

  20. Amini M K, Mazloum M, Ensafi A A. Lead selective membrane electrode using cryptand(222) neutral carrier. Fresenius’ J Anal Chem, 1999, 364(8): 690–693

    Article  CAS  Google Scholar 

  21. Gupta V K, Mangla R, Agarwal S. Pb(II) Selective Potentiometric Sensor Based on 4-tert-Butylcalix[4]arene in PVC Matrix. Electroanalysis, 2002, 14(15–16): 1127–1132

    Article  CAS  Google Scholar 

  22. Bhat V S, Ijeri V S, Srivastava A K. Coated wire lead(II) selective potentiometric sensor based on 4-tert-butylcalix[6]arene. Sens Actuators B, 2004, 99: 98–105

    Article  CAS  Google Scholar 

  23. Malinowska E, Brzozka Z, Kasiura K, et al. Lead selective electrodes based on thioamide functionalized calyx [4] arenes as ionophores. Anal Chim Acta, 1994, 298: 253–258

    Article  CAS  Google Scholar 

  24. Lu J Q, Chen R, He X W. A lead ion-selective electrode based on a calixarene carboxyphenyl azo derivative. J Electroanal Chem, 2002, 528: 33–38

    Article  CAS  Google Scholar 

  25. Chen L X, Zhang J, Zhao W F, et al. Double-armed calix[4]arene amide derivatives as ionophores for lead ion-selective electrodes. J Electroanal Chem, 2006, 589: 106–111

    Article  CAS  Google Scholar 

  26. Bochenska M, Lesinska U. Lower rim substituted p-tert-butylcalix[4]arenes. Part 10. New Pb(II)-selective electrodes based on tetrasubstituted calix[4]arene with amides. Chem Anal (Warsaw), 2006, 51(6): 879–887

    CAS  Google Scholar 

  27. Cadogan F, Kane P, McKervey M A, et al. Lead-selective electrodes based on calixarene phosphine oxide derivatives. Anal Chem, 1999, 71(24): 5544–5550

    Article  CAS  Google Scholar 

  28. Yaftian M R, Rayati S, Emadi D, et al. A coated wire-type lead(II) ion-selective electrode based on a phosphorylated calix[4]arene derivative. Anal Sci, 2006, 22: 1075–1078

    Article  PubMed  CAS  Google Scholar 

  29. Zhong Z M, Yao J X. Study on lead ion selective electrode based on calixarene phosphate as ionophore. Chin J Anal Chem (in Chinese), 2006, 34(4): 587

    CAS  Google Scholar 

  30. Jain A K, Gupta V K, Singh L P J, et al. A comparative study of Pb2+ selective sensors based on derivatized tetrapyrazole and calix[4]arene receptors. Electrochim Acta, 2006, 51: 2547–2553

    Article  CAS  Google Scholar 

  31. Evtugyn G A, Stoikov I I, Beljyakova S V, et al. Ag selective electrode based on glassy carbon electrode covered with polyaniline and thiacalix[4]arene as neutral carrier. Talanta, 2007, 71: 1720–1727

    Article  CAS  PubMed  Google Scholar 

  32. Jose P, Menon S. Lower-rim substituted calixarenes and their applications. Bioinorganic Chemistry and Application, 2007, 2007, Article ID 65815, doi: 10.1155/2007/65815

  33. Liu L, Han J, Yan C G. Progress in study of novel supramolecular host—thiacalixarene. Chin J Org Chem (in Chinese), 2007, 27(8): 907–917

    CAS  Google Scholar 

  34. Wang H, Li Z, Li Y. Synthesis and cationic selectivity studies of novel calix[4]arene derivatives containing heteroatom at the lower rim. Sci China B, Chem, 2007, 50(5): 654–659

    Article  CAS  Google Scholar 

  35. Gupta V K, Jain A K, Maheshwari G, et al. Copper(II)-selective potentiometric sensors based on porphyrins in PVC matrix. Sens Actuators B, 2006, 117: 99–106

    Article  CAS  Google Scholar 

  36. Gupta V K, Jain A K, Ishtaiwi Z, et al. Ni2+ selective sensors based on meso-tetrakis-{4-[tris-(4-allyl dimethylsilyl-phenyl)-silyl]-phenyl} porphyrin and (sal)2trien in poly(vinyl chloride) matrix. Talanta, 2007, 73: 803–811

    Article  CAS  PubMed  Google Scholar 

  37. Sadeghi S, Shamsipur M. Lead(II)-selective membrane electrode based on tetraphenylporphyrin. Anal Lett, 2000, 33(1): 17–28

    Article  CAS  Google Scholar 

  38. Lee H K, Song K, Seo H R, et al. Lead(II)-selective electrodes based on tetrakis(2-hydroxy-1-naphthyl)porphyrins: the effect of atropisomers. Sens Actuators B, 2004, 99: 323–329.

    Article  CAS  Google Scholar 

  39. Zhang W J, Li C Y, Zhang X B, et al. Synthesis of an amide-linked diporphyrin xanthene as a neutral carrier for a lead(II)-sensitive electrode. Anal Lett, 2007, 40(6): 1023–1035

    Article  CAS  Google Scholar 

  40. Bouabdallah I, Zidane, Hacht B, et al. Liquid-liquid extraction of copper (II), cadmium (II) and lead (II) using tripodal N-donor pyrazole ligands. Arkivoc, 2006, (xi): 59–65

  41. Radi S, Ramdani A, Lekchiri Y, et al. New tetrapyrazolic macrocycle. synthesis and preliminary use in metal ion extraction. Tetrahedron, 2004, 60: 939–942

    Article  CAS  Google Scholar 

  42. Guo S J, Luo K, Wang W H, et al. Design and synthesis of novel chiral imidazolium cyclophanes and their enantioselective recognition for α-amino acids and their derivatives. Chem J Chin Univ (in Chinese), 2006, 27(9):1664–1668

    CAS  Google Scholar 

  43. Radu A, Peper S, Bakker E, et al. Guidelines for improving the lower detection limit of ion-selective electrodes: a systematic approach. Electroanalysis, 2007, 19(2–3): 144–154

    Article  CAS  Google Scholar 

  44. Szigeti Z, Vigassy T, Bakker E, et al. Approaches to improving the lower detection limit of polymeric membrane ion-selective electrodes. Electroanalysis, 2006, 18(13–14): 1254–1265

    Article  CAS  Google Scholar 

  45. Li X G, Huang M R, Duan W, et al. Novel multifunctional polymers from aromatic diamines by oxidative polymerizations. Chem Rev, 2002, 102: 2925–3030

    Article  PubMed  CAS  Google Scholar 

  46. Huang M R, Peng Q Y, Li X G. Rapid and effective adsorption of lead ions on fine polyphenylenediamine microparticles. Chem Eur J, 2006, 12: 4341–4350

    Article  CAS  Google Scholar 

  47. Lü Q F, Huang M R, Li X G. Synthesis and heavy metal-ion sorption of pure sulfophenylenediamine copolymer nanoparticles with intrinsic conductivity and selfstability. Chem Eur J, 2007, 13: 6009–6018

    Article  CAS  Google Scholar 

  48. Li X G, Li H, Huang M R. Productive synthesis and multifunctionality of polydiaminoanthraquinone and its pure nanoparticles with inherent selfstability and adjustable conductivity. Chem Eur J, 2007, 13: 8884–8896

    Article  CAS  Google Scholar 

  49. Xu W T, Zhu R H. Preparation of β-cyclodextrin modified organic polymeric monolithic substrate and its application in room temperature phosphorescence. Chin J Anal Chem (in Chinese), 2008, 36(2): 201–205

    Article  CAS  Google Scholar 

  50. Liu H L, Zhu G P. Calcium ion selective electrode modified with β-cyclodextrin crosslinking polymer inclusion complex. Chin J Anal Lab (in Chinese), 2004, 23(4): 52–54

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XinGui Li.

Additional information

Supported by the National Natural Science Foundation of China (Grant No.20774065)

About this article

Cite this article

Huang, M., Ma, X. & Li, X. Macrocyclic compound as ionophores in lead(II) ion-selective electrodes with excellent response characteristics. Chin. Sci. Bull. 53, 3255–3266 (2008). https://doi.org/10.1007/s11434-008-0449-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0449-4

Keywords

Navigation