Skip to main content
Log in

The program structure designing and optimizing tests of GRAPES physics

  • Articles/Atmospheric Sciences
  • Published:
Chinese Science Bulletin

Abstract

According to the modularization and standardization of program structure in Global/Regional Assimilation and Prediction System (GRAPES), the plug-compatible and transplantable regional meso-scale and global middle-range physics software package is established. The package’s component integrality is comparative with the other advanced models physics. A three-level structure of connecting GRAPES physics and dynamic frame has been constructed. The friendly interface is designed for users to plug in their own physics packages. Phenomenon of grid-point storm rainfall in numerical prediction is analyzed with the numerical tests. The scheme of air vertical velocity calculation is improved. Optimizing tests of physics schemes are performed with the correlative parameters adjusting. The results show that the false grid-point storm rainfall is removed by precipitation scheme improving. Then the score of precipitation forecast is enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen D H, Xue J S, Yang X S, et al. New generation of multi-scale NWP system (GRAPES): general scientific design. Chin Sci Bull, 2008, 53(22): 3433–3445

    Article  Google Scholar 

  2. Xue J S, Zhuang S Y, Zhu G F, et al. Scientific design and preliminary results of three-dimensional variational data assimilation system of GRAPES. Chin Sci Bull, 2008, 53(22): 3446–3457

    Article  Google Scholar 

  3. Zhang R H, Shen X S. On the development of the GRAPES—A new generation of the national operational NWP system in China. Chin Sci Bull, 2008, 53(22): 3429–3432

    Article  Google Scholar 

  4. Betts A K. A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart J Roy Meteor Soc, 1986, 112: 677–691

    Google Scholar 

  5. Betts A K, Miller M J. A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, and arctic air-mass data sets. Quart J Roy Meteor Soc, 1986, 112: 693–709

    Google Scholar 

  6. Kain J S, Fritsch J M. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci, 1990, 47: 2784–2802

    Article  Google Scholar 

  7. Kain J S, Fritsch J M. Convective parameterization for mesoscale models: The Kain-Fritcsh scheme. Cumulus parameterization. Meteor Monogr, 1993, 46: 165–170

    Google Scholar 

  8. Fritsch J M, Chappell C F. Numerical prediction of convectively driven mesoscale pressure system. Part I: Convective parameterization. J Atmos Sci, 1980, 37: 1722–1733

    Article  Google Scholar 

  9. Kessler E. On the distribution and continuity of water substance in atmospheric circulation. Meteor Monogr, 1969, 10(32): 1–84

    Google Scholar 

  10. Lin Y L, Farley R D, Orville H D. Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteor, 1983, 22: 1065–1092

    Article  Google Scholar 

  11. Chen S H, Sun W Y. A one-dimensional time dependent cloud model. J Meteor Soc Japan, 2002, 80: 99–118

    Article  Google Scholar 

  12. Hong S Y, Juang H M H, Zhao Q. Implementation of prognostic cloud scheme for a regional spectral model. Mon Weather Rev, 1998, 126: 2621–2639

    Article  Google Scholar 

  13. Hu Z J, Lou X F, Bao S W. A simplified explicit scheme of phase mixed cloud and precipitation (in Chinese). Quart J Appl Meteor, 1998, 9(3): 257–264

    Google Scholar 

  14. Liu Q J, Hu Z J, Zhou X J. Explicit cloud schemes of HLAFS and simulation of heavy rainfall and clouds, Part I: Explicit cloud schemes (in Chinese). Quart J Appl Meteor, 2003, 14(S1): 60–67

    Google Scholar 

  15. Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci, 1989, 46: 3077–3107

    Article  Google Scholar 

  16. Fu Q S, Liou K N. Parameterization of the radiative properties of cirrus clouds. J Atmos Sci, 1993, 50: 2008–2025

    Article  Google Scholar 

  17. Mlawe E J, Taubman P D, Brown M J, et al. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J Geophys Res, 1997, 102(D14): 16663–16682

    Article  Google Scholar 

  18. Schwarzkopf M D, Fels S B. The simplified exchange method revisited: An accurate, rapid method for computation of infrared cooling rates and fluxes. J Geophys Res, 1991, 96: 9075–9096

    Article  Google Scholar 

  19. Lacis A A, Hansen J E. A parameterization for the absorption of solar radiation in the earth’s atmosphere. J Atmos Sci, 1974, 31: 118–133

    Article  Google Scholar 

  20. Morcrette J J. Impact of changes to to radiation transfer parameterization plus cloud opitical properties in the ECMWF model. Mon Weather Rev, 1990, 118: 847–873

    Article  Google Scholar 

  21. Morcrette J J. Radiation and cloud radiative prpperties in the ECMWF forecasting system. J Geophys Res, 1991, 96: 9121–9132

    Article  Google Scholar 

  22. Hong S Y, Pan H L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Weather Rev, 1996, 124: 2322–2339

    Article  Google Scholar 

  23. Janjic Z I. The step-mountain coordinate: physical package. Mon Weather Rev, 1990, 118: 1429–1443

    Article  Google Scholar 

  24. Beljaars A C M. The parameterization of surface fluxes in large-scale models under free convection. Quart J Roy Meteor Soc, 1994, 121: 255–270

    Article  Google Scholar 

  25. Janjic Z I. The Mellor-Yamada level 2.5 scheme in the NCEP Eta model. Eleventh Conference on Numerical Weather Prediction, Norfolk, VA, 19–23, August 1996, Am Meteorl Soc, Boston, MA, 333–334

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoQiang Xu.

Additional information

Supported by National Key and Technology Research and Development Program (Grant Nos. 2006BAC02B03, GYHY200706045 and GYHY200706005), National Natural Science Foundation of China (Grant Nos. 40775063 and 40575050), and National Basic Research Program of China (Grant No. 2004CB418306)

About this article

Cite this article

Xu, G., Chen, D., Xue, J. et al. The program structure designing and optimizing tests of GRAPES physics. Chin. Sci. Bull. 53, 3470–3476 (2008). https://doi.org/10.1007/s11434-008-0418-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0418-y

Keywords

Navigation