Skip to main content
Log in

Prediction of anther-expressed gene regulation in Arabidopsis

  • Articles/Molecular Biology
  • Published:
Chinese Science Bulletin

Abstract

Anther development in Arabidopsis, a popular model plant for plant biology and genetics, is controlled by a complex gene network. Despite the extensive use of this genus for genetic research, little is known about its regulatory network. In this paper, the direct transcriptional regulatory relationships between genes expressed in Arabidopsis anther development were predicted with an integrated bioinformatic method that combines mining of microarray data with promoter analysis. A total of 7710 transcription factor-gene pairs were obtained. The 80 direct regulatory relationships demonstrating the highest confidence were screened from the initial 7710 pairs; three of the 80 were validated by previous experiments. The results indicate that our predicted results were reliable. The regulatory relationships revealed by this research and described in this paper may facilitate further investigation of the molecular mechanisms of anther development. The bioinformatic method used in this work can also be applied to the prediction of gene regulatory relationships in other organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banerjee N, Zhang M Q. Functional genomics as applied to mapping transcription regulatory networks. Curr Opin Microbiol, 2002, 5(3): 313–317

    Article  PubMed  CAS  Google Scholar 

  2. Hartemink A J. Reverse engineering gene regulatory networks. Nat Biotechnol, 2005, 23(5): 554–555

    Article  PubMed  CAS  Google Scholar 

  3. Somogyi R, Sniegoski C. Modeling the complexity of genetic networks: understanding multigenetic and pleiotropic regulation. Complexity, 1996, 1: 45–63

    Google Scholar 

  4. Zou M, Conzen S D. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 2005, 21(1): 71–79

    Article  PubMed  CAS  Google Scholar 

  5. Tamada Y, Kim S, Bannai H, et al. Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection. Bioinformatics, 2003, 19(i2): ii227–ii236

    PubMed  Google Scholar 

  6. Blais A, Dynlacht B D Constructing transcriptional regulatory networks. Genes Dev, 2005, 19: 1499–1511

    Article  PubMed  CAS  Google Scholar 

  7. Lee T I, Rinaldi N J, Robert F, et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science, 2002, 298(5594): 799–804

    Article  PubMed  CAS  Google Scholar 

  8. Odom D T, Dowell R D, Jacobsen E S, et al. Core transcriptional regulatory circuitry in human hepatocytes. Mol Syst Biol, 2006, 2: 2006.0017, doi: 10.1038/msb4100059

  9. Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla E R. A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell, 2004, 16(11): 2923–2939

    Article  PubMed  CAS  Google Scholar 

  10. To A, Valon C, Savino G, et al. A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell, 2006, 18(7): 1642–1651

    Article  PubMed  CAS  Google Scholar 

  11. Schmid M, Davison T S, Henz S R, et al. A gene expression map of Arabidopsis thaliana development. Nat Genet, 2005, 37(5): 501–506

    Article  PubMed  CAS  Google Scholar 

  12. Obayashi T, Kinoshita K, Nakai K, et al. ATTED-II: A database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res, 2007, 35(Database issue): D863–D869

    Article  PubMed  CAS  Google Scholar 

  13. The Gene Ontology Consortium. Gene Ontology: Tool for the unification of biology. Nature Genet, 2000, 25: 25–29

    Google Scholar 

  14. Friso G, Ytterberg A J, Giacomelli L, et al. In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts; new proteins, functions and a plastid proteome database. Plant Cell, 2004, 16: 478–499

    Article  PubMed  CAS  Google Scholar 

  15. Honys D, Twell D. Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol, 2003, 132(2): 640–652

    Article  PubMed  CAS  Google Scholar 

  16. Wellmer F, Riechmann J L, Alves-Ferreira M, et al. Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Plant Cell, 2004, 16(5): 1314–1326

    Article  PubMed  CAS  Google Scholar 

  17. Honys D, Twell D. Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 2004, 5(11): R85

    Article  PubMed  Google Scholar 

  18. Janaki C, Joshi R R. Motif detection in Arabidopsis: Correlation with gene expression data. In Silico Biol, 2004, 4(2): 149–146

    PubMed  CAS  Google Scholar 

  19. Bailey T L, Elkan C. The value of prior knowledge in discovering motifs with MEME. Proc Int Conf Intell Syst Mol Biol, 1995, 3: 21–29

    PubMed  CAS  Google Scholar 

  20. Caselle M, Di Cunto F, Provero P. Correlating overrepresented upstream motifs to gene expression: A computational approach to regulatory element discovery in eukaryotes. BMC Bioinformatics 2002, 3: 7

    Article  PubMed  Google Scholar 

  21. Mahony S, Benos P V. STAMP: A web tool for exploring DNA-binding motif similarities. Nucleic Acids Res 2007, 35(Web Server issue): W253–W258

    Article  PubMed  Google Scholar 

  22. Matys V, Fricke E, Geffers R, et al. TRANSFAC: Transcriptional regulation, from patterns to profiles. Nucleic Acids Res, 2003, 31: 374–378

    Article  PubMed  CAS  Google Scholar 

  23. Matys V, Fricke E, Geffers R, et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res, 2003, 31: 374–378

    Article  PubMed  CAS  Google Scholar 

  24. Steffens N O, Galuschka C, Schindler M, et al. 2004. AthaMap: an online resource for in silico transcription factor binding sites in the Arabidopsis thaliana genome. Nucleic Acids Res, 32: D368–372

    Article  PubMed  CAS  Google Scholar 

  25. Palaniswamy S K, James S, Sun H, et al. A platform to link cis-regulatory elements and transcription factors into regulatory networks. Plant Physiol, 2006, 140(3): 818–829

    Article  PubMed  CAS  Google Scholar 

  26. Gomez-Mena C, de Folter S, Costa M M, et al. Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development, 2005, 132(3): 429–438

    Article  PubMed  CAS  Google Scholar 

  27. Bowman J L, Smyth D R. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development, 1999, 126(11): 2387–2396

    PubMed  CAS  Google Scholar 

  28. De Folter S, Immink R G, Kieffer M, et al. Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. Plant Cell, 2005, 17(2): 1424–1433

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhongNan Yang.

Additional information

Contributed equally to this work

Supported by the National Natural Science Foundation of China (Grant No. 30530100) and Science Foundation of Shanghai Municipal Education Commission (Grant No. 07ZZ60)

Electronic supplementary material

About this article

Cite this article

Huang, J., Yang, J., Wang, G. et al. Prediction of anther-expressed gene regulation in Arabidopsis . Chin. Sci. Bull. 53, 3198–3203 (2008). https://doi.org/10.1007/s11434-008-0381-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0381-7

Keywords

Navigation