Chinese Science Bulletin

, 53:2652

Estimating divergence times among subfamilies in Nymphalidae

Article

Abstract

The mitochondrial cytochrome oxidase subunit I (COI) gene and the nuclear elongation factor 1α (EF-1α) gene were sequenced from 13 species of Nymphalidae. Phylogenetic trees of Nymphalidae, which is the largest family in butterflies, were constructed based on the sequences determined from 13 species sequenced in our laboratory and an additional 43 species obtained from GenBank using the maximum likelihood (ML) and Bayesian methods. Relative-rate tests between lineages in these phylogenetic trees were performed. On the basis of the results of the relative-rate tests and fossil information of Satyrinae, Nymphalinae and Biblidinae, the average divergence times among the subfamilies are estimated as 44.2–87.1 million years ago (Ma). These results will be helpful for better understanding of the origin and evolution of this family, as well as the divergence time of butterflies and other complex taxa.

Keywords

Nymphalidae phylogenetic analysis divergence time COI EF-1α 

References

  1. 1.
    Wahlberg N. That awkward age for butterflies: Insights from the age of the Butterfly subfamily Nymphalinae (Lepidoptera: Nymphalidae). Syst Biol, 2006, 55: 703–714PubMedCrossRefGoogle Scholar
  2. 2.
    Chou I. Monograph of Chinese Butterflies (in Chinese). Zhengzhou: Henan Scientific and Technological Publishing House, 1994Google Scholar
  3. 3.
    Chou I. Classification and Identification of Chinese Butterflies (in Chinese). Zhengzhou: Henan Scientific and Technological Publishing House, 1998Google Scholar
  4. 4.
    Braby M F. Phenotypic variation in adult Mycalesis Hübner (Lepidoptera: Nymphalidae: Satyrinae) from the Australian wet-dry tropics. J Aust Entomol Soc, 1994, 33: 327–336CrossRefGoogle Scholar
  5. 5.
    Freitas A V L, Oliveira P S. Biology and behavior of the neotropical butterfly Eunica bechina (Nymphalidae) with special reference to larval defence against ant predation. J Res Lepidoptera, 1992, 31: 1–11Google Scholar
  6. 6.
    Li C L, Zhu B Y. The Profile of Butterflies in China (in Chinese). Shanghai: Shanghai Yuandong Press, 1992Google Scholar
  7. 7.
    Freitas A V L, Brown K S Jr. Phylogeny of the Nymphalidae (Lepidoptera). Syst Biol, 2004, 53: 363–383PubMedCrossRefGoogle Scholar
  8. 8.
    Wahlberg N, Brower A V Z, Nylin S. Phylogenetic relationships and historical biogeography of tribes and genera in the subfamily Nymphalinae (Lepidoptera: Nymphalidae). Biol J Linn Soc, 2005, 86: 227–251CrossRefGoogle Scholar
  9. 9.
    Ackery P R. Hostplants and classification: A review of nymphalid butterflies. Biol J Linn Soc, 1988, 33: 95–203CrossRefGoogle Scholar
  10. 10.
    Harvey D J. Higher classification of the Nymphalidae, Appendix B. In: Nijhout H F, ed. Higher Classification of the Nymphalidae, Appendix B. Washington, DC: Smithsonian Institution Press, 1991. 255–273Google Scholar
  11. 11.
    Wahlberg N, Weingartner E, Nylin S. Towards a better understanding of the higher systematics of Nymphalidae (Lepidoptera: Papilionoidea). Mol Phylogen Evol, 2003, 28: 473–484CrossRefGoogle Scholar
  12. 12.
    Wahlberg N, Zimmermann M. Pattern of phylogenetic relationships among members of the tribe Melitaeini (Lepidoptera: Nymphalidae) inferred from mitochondrial DNA sequences. Cladistics, 2000, 16: 347–363CrossRefGoogle Scholar
  13. 13.
    Wahlberg N. The phylogenetics and biochemistry of host plant specialization in melitaeine butterflies (Lepidoptera: Nymphalidae). Evolution, 2001, 55: 522–537PubMedCrossRefGoogle Scholar
  14. 14.
    Folmer O, Black M B, Hoch W, et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mari Biol Biotech, 1994, 3: 294–299Google Scholar
  15. 15.
    Simon C, Frati F, Beckenbach A, et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomo Soc Amer, 1994, 87: 651–701Google Scholar
  16. 16.
    Monteiro A, Pierce N E. Phylogeny of bicyclus (Lepidoptera: Nymphalidae) inferred from COI, COII and EF-1α gene sequences. Mol Phylogen Evol, 2001, 18: 264–281CrossRefGoogle Scholar
  17. 17.
    Thompson J D, Gibson T J, Plewniak F, et al. The Clustal X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res, 1997, 25: 4876–4882PubMedCrossRefGoogle Scholar
  18. 18.
    Swofford D L. PAUP*: Phylogenetic analysis using parsimony (* and other methods) sunderland. Massachusetts: Sinauer Associates, 1998Google Scholar
  19. 19.
    Farris J S, Kallersjo M, Kluge A G, et al. Testing significance of incongruence. Cladistics, 1995, 10: 315–319CrossRefGoogle Scholar
  20. 20.
    Brower A V Z. Phylogenetic relationships among the Nymphalidae (Lepidoptera), inferred from partial sequences of the wingless gene. Pro Royal Soc London Ser B Biol Sci, 2000, 267: 1201–1211CrossRefGoogle Scholar
  21. 21.
    Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 2006, 22: 2688–2690PubMedCrossRefGoogle Scholar
  22. 22.
    Posada D, Crandall K A. MODELTEST: Testing the model of DNA substitution. Bioinformatics, 1998, 14: 817–818PubMedCrossRefGoogle Scholar
  23. 23.
    Marc R R, Dorothée H. RRTree: Relative-rate tests between groups of sequences on a phylogenetic tree. Bioinformatics, 2000, 16: 296–297CrossRefGoogle Scholar
  24. 24.
    Rannala B, Yang Z H. Inferring speciation times under an episodic molecular clock. Syst Biol, 2007, 56: 453–466PubMedCrossRefGoogle Scholar
  25. 25.
    Yang Z H, Rannala B. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol Biol Evol, 2006, 23: 212–226PubMedCrossRefGoogle Scholar
  26. 26.
    Penalver E, Grimaldi D A. New data on Miocene butterflies in Dominican Amber (Lepidoptera: Riodinidae and Nymphalidae) with the description of a new nymphalid. Amer Mus Novi, 2006, 3519: 1–5CrossRefGoogle Scholar
  27. 27.
    Murray D, Prowell D P. Molecular phylogenetics and evolutionary history of the neotropical Satyrine Subtribe Euptychiina (Nymphalidae: Satyrinae). Mol Phylogen Evol, 2005, 34: 67–80CrossRefGoogle Scholar
  28. 28.
    Drummond A J, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol, 2007, 7: 214PubMedCrossRefGoogle Scholar
  29. 29.
    Ackery P R, de Jong R, Vane-Wright R I. The butterflies: Hedyloidea, Hesperioidea, and Papilionoidea. In: Kristensen N P, ed. Lepidoptera: Moths and Butterflies. 1. Evolution, Systematics, and Biogeography. Handbook of Zoology IV, Part 35. Berlin and New York: De Gruyter, 1999. 264–300Google Scholar
  30. 30.
    Freitas A V L, Brown K S. Phylogeny of the Nymphalidae (Lepidoptera). Syst Biol, 2004, 53: 363–383PubMedCrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Research Institute of Applied Biology and College of Life Science and TechnologyShanxi UniversityTaiyuanChina
  2. 2.Institute of Plant ProtectionShanxi Academy of Agricultural ScienceTaiyuanChina
  3. 3.School of Life SciencesFudan UniversityShanghaiChina
  4. 4.Shanghai Center for Bioinformation TechnologyShanghaiChina

Personalised recommendations