Advertisement

Chinese Science Bulletin

, Volume 53, Issue 15, pp 2342–2352 | Cite as

Bayesian mixed models and divergence time estimation of Chinese cavefishes (Cyprinidae: Sinocyclocheilus)

  • ZhiQiang Li
  • BaoCheng Guo
  • JunBing Li
  • ShunPing He
  • YiYu Chen
Articles Hydrobiology

Abstract

The genus Sinocyclocheilus is distributed in Yun-Gui Plateau and its surrounding region only, within more than 10 cave species showing different degrees of degeneration of eyes and pigmentation with wonderful adaptations. To present, published morphological and molecular phylogenetic hypotheses of Sinocyclocheilus from prior works are very different and the relationships within the genus are still far from clear. We obtained the sequences of cytochrome b (cyt b) and NADH dehydrogenase subunit 4 (ND4) of 34 species within Sinocyclocheilus, which represent the most dense taxon sampling to date. We performed Bayesian mixed models analyses with this data set. Under this phylogenetic framework, we estimated the divergence times of recovered clades using different methods under relaxed molecular clock. Our phyloegentic results supported the monophyly of Sinocyclocheilus and showed that this genus could be subdivided into 6 major clades. In addition, an earlier finding demonstrating the polyphyletic of cave species and the most basal position of S. jii was corroborated. Relaxed divergence-time estimation suggested that Sinocyclocheilus originated at the late Miocene, about 11 million years ago (Ma), which is older than what have been assumed.

Keywords

Sinocyclocheilus phylogeny relaxed molecular clock 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Culver D C, Kane T C, Fong D W. Adaptation and Natural Selection in Caves. Cambridge: Harvard University Press, 1995Google Scholar
  2. 2.
    Romero A. The Biology of Hypogean Fishes. Dordrecht: Kluwer Academic Publishers, 2001Google Scholar
  3. 3.
    Protas M E, Hersey C, Kochanek D, et al. Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nat Genet, 2006, 38(1): 107–111PubMedCrossRefGoogle Scholar
  4. 4.
    Jeffery W R. Adaptive evolution of eye degeneration in the Mexican blind cavefish. J Hered, 2005, 96(3): 185–196PubMedCrossRefGoogle Scholar
  5. 5.
    Dowling T E, Martasian D P, Jeffery W R. Evidence for multiple genetic forms with similar eyeless phenotypes in the blind cavefish, Astyanax mexicanus. Mol Biol Evol, 2002, 19(4): 446–455PubMedGoogle Scholar
  6. 6.
    Zhao Y H, Watanabe K, Zhang C G. Sinocyclocheilus donglanensis, a new cavefish (Teleostei: Cypriniformes) from Guangxi, China. Ichthyol Res, 2006, 53: 121–128CrossRefGoogle Scholar
  7. 7.
    Shan X H, Yue P Q. The study on phylogeny of the Sinocyclocheilus fishes (Cypriniformes: Cyprinidae: Barbinae). Zool Res (in Chinese), 1994, 15(suppl): 36–44Google Scholar
  8. 8.
    Wang D Z, Chen Y Y, Li X Y. An analysis on the phylogeny of the genus Sinocyclocheilus. Acta Academiae Medicinae Zunyi (in Chinese), 1999, 22: 1–6Google Scholar
  9. 9.
    Xiao H, Chen S Y, Liu Z M, et al. Molecular phylogeny of Sinocyclocheilus (Cypriniformes: Cyprinidae) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol, 2005, 36(1): 67–77PubMedCrossRefGoogle Scholar
  10. 10.
    Chen X Y, Yang J X. A systematic revision of “Barbodes” fishes in China. Zool Res, 2003, 24: 377–386Google Scholar
  11. 11.
    Kottelat M. Nomenclature of the genera Barbodes, Cyclocheilichthys, Rasbora and Chonerhinos (Teleostei: Cyprinidae and Tetraodontidae), with comments on the definition of the first reviser. Raffles Bull Zool, 1999, 47: 591–600Google Scholar
  12. 12.
    Nylander J A A, Ronquist F, Huelsenbeck J P, et al. Bayesian phylogenetic analysis of combined data. Syst Biol, 2004, 53: 47–67PubMedCrossRefGoogle Scholar
  13. 13.
    Brandley M C, Schmitz A, Reeder T W. Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards. Syst Biol, 2005, 54:373–390PubMedCrossRefGoogle Scholar
  14. 14.
    Zhao Y H. An endemic cavefish genus Sinocyclocheilus in China—species diversity, systematics, and zoogeography (Cypriniformes: Cyprinidae). Doctor Dissertation (in Chinese). Beijing: Institute of Zoology, Chinese Academy of Sciences, 2006Google Scholar
  15. 15.
    Wang X Z, Li J B, He S P. Molecular evidence for the monophyly of East Asian groups of Cyprinidae (Teleostei: Cypriniformes) derived from the nuclear recombination activating gene 2 sequences. Mol Phylogenet Evol, 2007, 42: 157–170PubMedCrossRefGoogle Scholar
  16. 16.
    Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press, 1989Google Scholar
  17. 17.
    Zardoya R, Doadrio I. Phylogenetic relationships of Iberian cyprinids: Systematic and biogeographical implications. Proc Biol Sci, 1998, 265: 1365–1372PubMedCrossRefGoogle Scholar
  18. 18.
    Thompson J D, Gibson T J, Plewniak F, et al. The Clustal X windows interface: Flexible strategies for multiple sequences alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25: 4876–4882PubMedCrossRefGoogle Scholar
  19. 19.
    Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform, 2004, 5: 150–163PubMedCrossRefGoogle Scholar
  20. 20.
    Swofford D L. PAUP*: Phylogenetic analysis using Parsimony (*and other methods), Version 4. Sunderland, Sinauer Associates, 2002Google Scholar
  21. 21.
    Ronquist F, Huelsenbeck J P. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 2003, 19: 1572–1574PubMedCrossRefGoogle Scholar
  22. 22.
    Posada D, Crandall K A. Modeltest: Testing the model of DNA substitution. Bioinformatics, 1998, 14: 817–818PubMedCrossRefGoogle Scholar
  23. 23.
    Posada D, Buckley T R. Model selection and model averaging in phylogenetics: Advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol, 2004, 53: 793–808PubMedCrossRefGoogle Scholar
  24. 24.
    Newton M A, Raftery A E. Approximate Bayesian inference with the weighted likelihood bootstrap. J R Stat Stoc, 1994, 56: 3–48Google Scholar
  25. 25.
    Kass R, Raftery A. Bayes factor. J Am Stat Assoc, 1995, 90: 773–795CrossRefGoogle Scholar
  26. 26.
    Wilgenbusch J C, Warren D L, Swofford D L. AWTY: A system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. Available at http://ceb.csit.fsu.edu/awty, 2004
  27. 27.
    Drummond A J, Rambaut A. BEAST v1.4.5. University of Oxford, Oxford. Available at http://evolve.zoo.ox.ac.uk/beast, 2005Google Scholar
  28. 28.
    Rambaut A, Drummond A J. Tracer. Version 1.3, Available at http://evolve.zoo.ox.ac.uk, 2003
  29. 29.
    Li J J, Fang X M, Pan B T, et al. Late Cenozoic intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area. Quarter Sci (in Chinese), 2001, 21: 381–391Google Scholar
  30. 30.
    Sanderson M J. A nonparametric approach to estimating divergence times in the absence of rate constancy. J Mol Evol, 1997, 14: 1218–1231Google Scholar
  31. 31.
    Sanderson M J. Estimating absolute rates of molecular evolution and divergence times: A penalized likelihood approach. Mol Biol Evol, 2002, 19: 101–109PubMedGoogle Scholar
  32. 32.
    Sanderson M J. r8s: Inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics, 2003, 19: 301–302PubMedCrossRefGoogle Scholar
  33. 33.
    Thorne J L, Kishino H. Divergence time and evolutionary rate estimation with multilocus data. Syst Biol, 2002, 51: 689–702PubMedCrossRefGoogle Scholar
  34. 34.
    Rutschmann F. Bayesian molecular dating using PAML/multidivtime. A step-by-step manual. University of Zurich, Switzerland. Available at http://www.plant.ch, 2005Google Scholar
  35. 35.
    Yang Z, Yoder A D. Comparison of likelihood and Bayesian methods for estimating divergence times using multiple gene loci and calibration points, with application to a radiation of cute-looking mouse lemur species. Syst Biol, 2003, 52: 705–716PubMedCrossRefGoogle Scholar
  36. 36.
    Yang Z. PAML: A program package for phylogenetic analysis by maximum likelihood. Comp Appl Biosci, 1997, 13: 555–556PubMedGoogle Scholar
  37. 37.
    Guo X G, Wang Y Z. Partitioned Bayesian analyses, dispersal-vicariance analysis, and the biogeography of Chinese toad-headed lizards (Agamidae: Phrynocephalus): A re-evaluation. Mol Phylogenet Evol, 2007, 45: 643–662PubMedCrossRefGoogle Scholar
  38. 38.
    Wang D Z, Chen Y Y. The origin and adaptive evolution of the genus Sinocyclocheilus. Acta Hydrobiol Sin, 2000, 24: 630–634Google Scholar
  39. 39.
    Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet. Science, 1992, 255: 1663–1670PubMedCrossRefGoogle Scholar
  40. 40.
    Li J J, Fang X M, Ma H Z, et al. Geomorphological and environmental evolution in the upper reaches of the Yellow River during the late Cenozoic. Sci China Ser D-Earth Sci, 1996, 39: 380–390Google Scholar
  41. 41.
    An Z, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 2000, 411: 62–66Google Scholar
  42. 42.
    Pearson P N, Palmer M R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 2000, 406: 695–699PubMedCrossRefGoogle Scholar
  43. 43.
    Pagani M, Freeman K H, Arthur M A. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science, 1999, 285: 876–879PubMedCrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  • ZhiQiang Li
    • 1
    • 2
  • BaoCheng Guo
    • 1
    • 2
  • JunBing Li
    • 1
    • 2
  • ShunPing He
    • 1
  • YiYu Chen
    • 1
  1. 1.Institute of HydrobiologyChinese Academy of SciencesWuhanChina
  2. 2.Graduate University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations