Skip to main content
Log in

Ultrafast isomerization dynamics of retinal in bacteriorhodopsin as revealed by femtosecond absorption spectroscopy

  • Articles
  • Physical Chemistry
  • Published:
Chinese Science Bulletin

Abstract

A femtosecond (fs) broad-band absorption apparatus was used to measure the early photoisomerization process of bacteriorhodopsin’s (BR) photocycle to reveal the character of the important intermediate of J625 and to obtain a deeper understanding of the role of photoisomerization in BR photocycle. Two time constants of 0.5 ps (95%) and 2.0 ps (5%) were brought out by global fitting on thirty curves in the near-infrared region. We suggest that the first time constant results from the decay of I460 intermediate, and the longer component might be associated with BR isomer. The global analysis over 450, 540, 630, 710 and 870 nm traces identified two time constants, ∼0.5 and ∼3 ps. The slower component can be extracted from the processes of both J625→BR568 (540 nm) and J625→K590 (630 nm), suggesting J-intermediate takes a partial cis configuration. The obvious negative feature in early delay time of 700–780 nm regions was attributed to the radiative transition (stimulated emission) from the Franck-Condon active configuration along the isomerization potential surface of all-trans-retinal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oesterhelt D, Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature New Biol, 1971, 233(39): 149–152

    PubMed  CAS  Google Scholar 

  2. Racker E, Stoeckenius W. Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation. J Biol Chem, 1974, 249(2): 662–663

    PubMed  CAS  Google Scholar 

  3. Lewis A, Spoonhower J, Bogomolni R A, et al. Tunable laser resonance Raman spectroscopy of bacteriorhodopsin. Proc Natl Acad Sci USA, 1974, 71(11): 4462–4466

    Article  PubMed  CAS  Google Scholar 

  4. Katre N V, Wolber P K, Stoeckenius W, et al. Attachment site(s) of retinal in bacteriorhodopsin. Proc Natl Acad Sci USA, 1981, 78(7): 4068–4072

    Article  PubMed  CAS  Google Scholar 

  5. Pettei M J, Yudd A P, Nakanishi K, et al. Identification of retinal isomers isolated from bacteriorphodopsin. Biochemistry, 1977, 16(9): 1955–1959

    Article  PubMed  CAS  Google Scholar 

  6. Braiman M, Mathies R A, Resonance Raman spectra of bacteriorhodopsin’s primary photoproduct: Evidence for a distorted 13-cis-retinal chromophore. Proc Natl Acad Sci USA, 1982, 79(2): 403–407

    Article  PubMed  CAS  Google Scholar 

  7. Dobler J, Zinth W, Kaiser W, Oesterhelt D. Excited-State reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy. Chem Phys Lett, 1988, 144(2): 215–220

    Article  CAS  Google Scholar 

  8. Mathies R A, Cruz C H B, Pollard W T, et al. Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin. Science, 1988, 240(4853): 777–779

    Article  PubMed  CAS  Google Scholar 

  9. Hasson K C, Gai F, Anfinrud P A. The photoisomerization of retinal in bacteriorhodopsin: experimental evidence for a three-state model. Proc Natl Acad Sci USA, 1996, 93(26): 15124–15129

    Article  PubMed  CAS  Google Scholar 

  10. Gai F, Hasson K C, McDonald J C, et al. Chemical dynamics in proteins: the photoisomerization of retinal in bacteriorhodopsin. Science, 1998, 279(5358): 1886–1891

    Article  PubMed  CAS  Google Scholar 

  11. Schulten K, Humphrey W, Lugunov I, et al. Molecular dynamics studies of bacteriorhodopsin’s photocycle. Isr J Chem, 1995, 35: 447–464

    CAS  Google Scholar 

  12. Du M, Fleming G. R. Femtosecond time-resolved fluorescence spectroscopy of bacteriorhodopsin-direct observation of excited-state dynamics in the primary step of the proton pump cycle. Biophys Chem, 1993, 48(2): 101–111

    Article  CAS  Google Scholar 

  13. Haran G, Wynne K, Xie A. H, et al. Excited state dynamics of bacteriorhodopsin revealed by transient stimulated emission spectra. Chem Phys Lett, 1996, 261(4–5): 389–395

    Article  CAS  Google Scholar 

  14. Alfano R R, Govindjee W Y R, Becher B, et al. Picosecond kinetics of the fluorescence from the chromophore of the purple membrane protein of Halobacterium halobium. Biophys J, 1976, 16(5): 541–545

    PubMed  CAS  Google Scholar 

  15. Shapiro S L, Campillo A J, Lewis A, et al. Picosecond and steady state, variable intensity and variable temperature emission spectroscopy of bacteriorhodopsin. Biophys J, 1978, 23(3): 383–393

    PubMed  CAS  Google Scholar 

  16. Delaney J K, Brack T L, Atkinson G H, et al. Primary picosecond molecular events in the photoreaction of the BR5.12 artificial bacteriorhodopsin pigment. Proc Natl Acad Sci USA, 1995, 92(6): 2101–2105

    Article  PubMed  CAS  Google Scholar 

  17. Zhong Q, Ruhman S, Ottolenghi M, et al. Reexamining the primary lightinduced events in bacteriorhodopsin using a synthetic C13=C14-locked chromophore. J Am Chem Soc, 1996, 118(51): 12828–12829

    Article  CAS  Google Scholar 

  18. Rousso I, Khachatryan E, Gat Y, et al. Microsecond atomic force sensing of protein conformational dynamics: Implications for the primary light-induced events in bacteriorhodopsin. Proc Natl Acad Sci USA, 1997, 94(5): 7937–7941

    Article  PubMed  CAS  Google Scholar 

  19. Garavelli M, Celani P, Bernardi F, et al. The C5H6NH2+ protonated shiffbase: An ab initio minimal model for retinal photoisomerization. J Am Chem Soc, 1997, 119(29): 6891–6901

    Article  CAS  Google Scholar 

  20. Song L, El-Sayed M A. Primary step in bacteriorhodopsin photosynthesis: Bond stretch rather than angle twist of its retinal excited-state structure. J Am Chem Soc, 1998, 120(34): 8889–8890

    Article  CAS  Google Scholar 

  21. González-Luque R, Garavelli M, Bernardi F, et al. Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization. Proc Natl Acad Sci USA, 2000, 97(17): 9379–9384

    Article  PubMed  Google Scholar 

  22. Atkinson G H, Ujj L, Zhou Y. Vibrational spectrum of the J-625 intermediate in the room temperature bacteriorhodopsin photocycle. J Phys Chem A, 2000, 104(18): 4130–4139

    Article  CAS  Google Scholar 

  23. Ujj L, Zhou Y, Sheves M, et al. Vibrational spectrum of a picosecond intermediate in the artificial BR5.12 photoreaction: Picosecond time-resolved CARS of T5.12. J Am Chem Soc, 2000, 122(1): 96–106

    Article  CAS  Google Scholar 

  24. Herbst J, Heyne K, Diller R. Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization. Science, 2002, 297(5582): 822–825

    Article  PubMed  CAS  Google Scholar 

  25. Polland H J, Franz M A, Zinth W, et al. Early picosecond events in the photocycle of bacteriorhodopsin. Biophys J, 1986, 49(3): 651–662

    Article  CAS  PubMed  Google Scholar 

  26. Han R M, Wu Y S, Feng J, et al. Radical cation generation from singlet and triplet excited states of all-trans-lycopene in chloroform. Photochem Photobiol, 2004, 80(2): 326–333

    Article  PubMed  CAS  Google Scholar 

  27. Kobayashi T, Terauchi M, Kouyama T, et al. Femtosecond spectroscopy of acidified and neutral bacteriorhodospin. Proc SPIE-Int Soc Opt Eng, 1991, 1403: 407–416

    CAS  Google Scholar 

  28. Nuss M C, Zinth W, Kaiser W, et al. Femtosecond spectroscopy of the first events of the photochemical cycle in bacteriorhodopsin. Chem Phys Lett, 1985, 117(1): 1–7

    Article  CAS  Google Scholar 

  29. Kryukov P G, Matveets Y A, Sharkov A V, et al. Lasers in photomedicine and photobiology. Springer Ser Opt Sci, 1980, 22: 200–206

    CAS  Google Scholar 

  30. Van den Berg R, Jang H C, Bitting D J, et al. Subpicosecond resonance Raman spectra of the early intermediates in the photocycle of bacteriorhodopsin. Biophys J, 1990, 58(1): 135–142

    PubMed  Google Scholar 

  31. Haacke S, Schenkl S, Vinzani S, et al. Femto-and picosecond fluorescence studies of native bacteriorhodopsin and of a non-isomerizing analog. Biopolymers, 2002, 67(4–5): 306–309

    Article  PubMed  CAS  Google Scholar 

  32. Schmidt B, Sobotta C, Heinz B, et al. Excited-state dynamics of bacteriorhodopsin probed by broadband femtosecond fluorescence spectroscopy. Biochim Biophys Acta, 2005, 1706(1–2): 165–173

    PubMed  CAS  Google Scholar 

  33. Koyama Y, Nakasu H, Mukai Y, et al. Isomerization of the retinylidene chromophore of bacteriorhodopsin in light adaption: Intrinsic isomerization of the chromophore and its control by the apo-protein. Photochem Photobiol, 1993, 57(3): 732–738

    Article  CAS  Google Scholar 

  34. Tittor J, Oesterhelt D. The quantum yield of bacteriorhodopsin. FEBS Lett, 1990, 263(2): 269–273

    Article  CAS  Google Scholar 

  35. Govindjee R, Balashov S P, Ebrey T G. Quantum efficiency of the photochemical cycle of bacteriorhodopsin. Biophys J, 1990, 58(3): 597–608

    CAS  PubMed  Google Scholar 

  36. Rohr M, Gartner W, Schweitzer G, et al. Quantum yields of the photochromic equilibrium between bacteriorhodopsin and its bathointermediate K: Femto-and nanosecond optoacoustic spectroscopy. J Phys Chem, 1992, 96(14): 6055–6061

    Article  CAS  Google Scholar 

  37. Logunov S L, El-Sayed M A, Song L. Photoisomerization quantum yield and apparent energy content of the K intermediate in the photocycles of bacteriorhodopsin, its mutants D85N, R82Q, and D212N, and deionized blue bacteriorhodopsin. J Phys Chem, 1996, 100(6): 2391–2398

    Article  CAS  Google Scholar 

  38. Schenkl S, van Mourik F, Friedman N, et al. Insights into excited-state and isomerization dynamics of bacteriorhodopsin from ultrafast transient UV absorption. Proc Natl Acad Sci USA, 2006, 103(11): 4101–4106

    Article  PubMed  CAS  Google Scholar 

  39. Ye T, Friedman N, Gat Y, et al. On the nature of the primary light-induced events in bacteriorhodopsin: Ultrafast spectroscopy of native and C13=C14 locked pigments. J Phys Chem B, 1999, 103(24): 5122–5130

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XiCheng Ai, KunSheng Hu or JianPing Zhang.

Additional information

Contributed equally to this work

Supported by the National Natural Science Foundation of China (Grant Nos. 20673144 and 20433010)

About this article

Cite this article

Wu, Y., Zhong, S., Ai, X. et al. Ultrafast isomerization dynamics of retinal in bacteriorhodopsin as revealed by femtosecond absorption spectroscopy. Chin. Sci. Bull. 53, 1972–1977 (2008). https://doi.org/10.1007/s11434-008-0283-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0283-8

Keywords

Navigation