Skip to main content

Cloning and sequence analysis of Sox genes in a tetraploid cyprinid fish, Tor douronensis

Abstract

A PCR survey for Sox genes in a young tetraploid fish Tor douronensis (Teleostei: Cyprinidae) was performed to access the evolutionary fates of important functional genes after genome duplication caused by polyploidization event. Totally 13 Sox genes were obtained in Tor douronensis, which represent SoxB, SoxC and SoxE groups. Phylogenetic analysis of Sox genes in Tor douronensis provided evidence for fish-specific genome duplication, and suggested that Sox19 might be a teleost specific Sox gene member. Sequence analysis revealed most of the nucleotide substitutions between duplicated copies of Sox genes caused by tetraploidization event or their orthologues in other species are silent substitutions. It would appear that the sequences are under purifying selective pressure, strongly suggesting that they represent functional genes and supporting selection against all null allele at either of two duplicated loci of Sox4a, Sox9a and Sox9b. Surprising variations of the intron length and similarities of two duplicated copies of Sox9a and Sox9b, suggest that Tor douronensis might be an allotetraploidy.

This is a preview of subscription content, access via your institution.

References

  1. Gubbay J, Collignon J, Koopman P, et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature, 1990, 346(6281): 245–250

    PubMed  Article  CAS  Google Scholar 

  2. Bowles J, Schepers G, Koopman P. Phylogeny of the Sox family of developmental transcription factors based on sequence and structural indicators. Dev Biol, 2000, 227(2): 239–255

    PubMed  Article  CAS  Google Scholar 

  3. Schepers G E, Teasdale R D, Koopman P. Twenty pairs of Sox: Extent, homology, and nomenclature of the mouse and human Sox transcription factor gene families. Dev Cell, 2002, 3(2): 167–170

    PubMed  Article  CAS  Google Scholar 

  4. de Martino S, Yan Y L, Jowett T, et al. Expression of Sox11 gene duplicates in zebrafish suggests the reciprocal loss of ancestral gene expression patterns in development. Dev Dyn, 2000, 217(3): 279–292

    PubMed  Article  Google Scholar 

  5. Koopman P, Schepers G, Brenner S, et al. Origin and diversity of the Sox transcription factor gene family: genome-wide analysis in Fugu Rubripes. Gene, 2004, 328: 177–186

    PubMed  Article  CAS  Google Scholar 

  6. Ohno S. Evolution by Gene Duplication. New York: Springer-Verlag. 1970

    Google Scholar 

  7. Wolfe K H. Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet, 2001, 2(5): 333–341

    PubMed  Article  CAS  Google Scholar 

  8. Comai L. The advantages and disadvantages of being polyploidy. Nat Rev Genet, 2005, 6(11): 836–846

    PubMed  Article  CAS  Google Scholar 

  9. Holland P W, Garcia-Fernandez J, Williams N A, et al. Gene duplications and the origins of vertebrate development. Development, 1994, Suppl: 125–133

  10. Skrabanek L, Wolfe K H. Eukaryote genome duplication — Where’s the evidence? Curr Opin Genet Dev, 1998, 8(6): 694–700

    PubMed  Article  CAS  Google Scholar 

  11. Hughes A L, Friedman R. 2r or Not 2r: Testing hypotheses of genome duplication in early vertebrates. J Struct Funct Genom, 2003, 3(1–4): 85–93

    Article  CAS  Google Scholar 

  12. Amores A, Force A, Yan Y L, et al. Zebrafish Hox clusters and vertebrate genome evolution. Science, 1998, 282(5394): 1711–1714

    PubMed  Article  CAS  Google Scholar 

  13. Christoffels A, Koh E G, Chia J M, et al. Fugu genome analysis provides evidence for a whole-Genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol, 2004, 21(6): 1146–1151

    PubMed  Article  CAS  Google Scholar 

  14. Hoegg S, Brinkmann H, Taylor J S, et al. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost Fish. J Mol Evol, 2004, 59(2): 190–203

    PubMed  Article  CAS  Google Scholar 

  15. Vandepoele K, De Vos W, Taylor J S, et al. Major events in the genome evolution of vertebrates: Paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci USA, 2004, 101(6): 1638–1643

    PubMed  Article  CAS  Google Scholar 

  16. Crow K D, Stadler P F, Lynch V J, et al. The “fish-specific” Hox cluster duplication is coincident with the origin of teleosts. Mol Biol Evol, 2006, 23(1): 121–136

    PubMed  Article  CAS  Google Scholar 

  17. LeComber S C, Smith C. Polyploidy in fishes: Patterns and processes. Biol J Linnean Soc, 2004, 82(4): 431–442

    Article  Google Scholar 

  18. Allendorf F W, Thorgaard G H. Tetraploidy and the evolution of salmonid fish. In: Turner J B, ed. Evolutionary Genetics of Fish. New York: Plenum Press, 1984. 1–53

    Google Scholar 

  19. Xiao H, Zhang R D, Feng J G, et al., Nuclear DNA content and ploidy of seventeen species of fishes in Sinocyclocheilus. Zoolog Res (in Chinese), 2002, 23(3): 195–199

    CAS  Google Scholar 

  20. Zan R, Song Z, Liu W. Studies on karyotypes and DNA contents of some Cyprinoid fishes, with notes on fish polyploids in China. In: Uyeno T, Arai R, Taniuchi T, et al, eds. Indo Pacific Fish Biology. Tokyo: Ichthyol Soc Japan, 1986. 877–885

    Google Scholar 

  21. Yu X J, Zhou T, Li Y C, et al. Chromosomes of Chinese Fresh-Water Fishes (in Chinese). Beijing: Science Press, 1989

    Google Scholar 

  22. Kellis M, Birren B W, Lander E S. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature, 2004, 428(6983): 617–624

    PubMed  Article  CAS  Google Scholar 

  23. Maere S, de Bodt S, Raes J, et al. Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA, 2005, 102(15): 5454–5459

    PubMed  Article  CAS  Google Scholar 

  24. Moore R C, Purugganan M D. The early stages of duplicate gene evolution. Proc Natl Acad Sci USA, 2003, 100(26): 15682–15687

    PubMed  Article  CAS  Google Scholar 

  25. Akhunov E D, Akhunova A R, Dvorak J. Mechanisms and rates of birth and death of dispersed duplicated genes during the evolution of a multigene family in diploid and tetraploid wheats. Mol Biol Evol, 2007, 24(2): 539–550

    PubMed  Article  CAS  Google Scholar 

  26. Brunet F G, Crollius H R, Paris M, et al. Gene loss and evolutionary rates following whole-genome duplication in teleost fishes. Mol Biol Evol, 2006, 23(9): 1808–1816

    PubMed  Article  CAS  Google Scholar 

  27. Wang X Z, Li J B, He S P. Molecular evidence for the monophyly of East Asian groups of Cyprinidae (Teleostei: Cypriniformes) derived from the nuclear recombination activating gene 2 sequences. Mol Phylogenet Evol, 2007, 42(1): 157–170

    PubMed  Article  CAS  Google Scholar 

  28. Chen Y Y. Fauna Sinica, Class Teleostei, Cypriniformes II (in Chinese). Beijing: Science Press. 1998

    Google Scholar 

  29. Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed. New York: Cold Spring Harbor Laboratory Press, 1989

    Google Scholar 

  30. Galay-Burgos M, Llewellyn L, Mylonas C C, et al. Analysis of the Sox Gene family in the european sea bass(Dicentrarchus Labrax). Comp Biochem Physiol B Biochem Mol Biol, 2004, 137(2): 279–284

    PubMed  Article  Google Scholar 

  31. Thompson J D, Gibson T J, Plewniak F, et al. The Clustal_X Windows interface: Flexible strategies for multiple sequences alignment aided by quality analysis Tools. Nucleic Acids Res, 1997, 25(24): 4876–4882

    PubMed  Article  CAS  Google Scholar 

  32. Tamura K, Dudley J, Nei M, et al. Mega 4: molecular evolutionary genetics analysis (Mega) software version 4.0. Mol Biol Evol, 2007, 24(8): 1596–1599

    PubMed  Article  CAS  Google Scholar 

  33. Ronquist F, Huelsenbeck J P. Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformaties, 2003, 19(12): 1572–1574

    Article  CAS  Google Scholar 

  34. Posada D, Crandall K A. Modeltest: Testing the model of DNA substitution. Bioinformatics, 1998, 14(9): 817–818

    PubMed  Article  CAS  Google Scholar 

  35. Campanella J, Bitincka L, Smalley J. Matgat: An application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics, 2003, 4(1): 29

    PubMed  Article  Google Scholar 

  36. Zhang J, Rosenberg H F, Nei M. Positive darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci USA, 1998, 95(7): 3708–3713

    PubMed  Article  CAS  Google Scholar 

  37. Moghadam H K, Ferguson M M, Danzmann R G. Evidence for Hox gene duplication in rainbow trout (Oncorhynchus Mykiss): A tetraploid model species. J Mol Evol, 2005, 61(6): 804–818

    PubMed  Article  CAS  Google Scholar 

  38. Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290(5494): 1151–1155

    PubMed  Article  CAS  Google Scholar 

  39. Luo J, Stadler P F, He S P, et al. PCR survey of Hox genes in the goldfish Carassius auratus auratus. J Exp Zoolog B Mol Dev Evol, 2007, 308(3): 250–258

    PubMed  Article  Google Scholar 

  40. Hughes M K, Hughes A L. Evolution of duplicate genes in a tetraploid animal, Xenopus Laevis. Mol Biol Evol, 1993, 10(6): 1360–1369

    PubMed  CAS  Google Scholar 

  41. Tiffin P, Gaut B S. Sequence diversity in the tetraploid Zea Perennis and the closely related diploid Z. diploperennis: insights from four nuclear loci. Genetics, 2001, 158(1): 401–412

    PubMed  CAS  Google Scholar 

  42. Vriz S, Lovell-Badge R. The zebrafish Zf-Sox 19 protein: a novel member of the Sox family which reveals highly conserved motifs outside of the DNA-binding domain. Gene, 1995, 153(2): 275–276

    PubMed  Article  CAS  Google Scholar 

  43. Chiang E F, Pai C I, Wyatt M, et al. Two Sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. Dev Biol, 2001, 231(1): 149–163

    PubMed  Article  CAS  Google Scholar 

  44. Kurosawa G, Yamada K, Ishiguro H, et al. Hox gene complexity in medaka fish may be similar to that in pufferfish rather than zebrafish. Biochem Biophys Res Commun, 1999, 260(1): 66–70

    PubMed  Article  CAS  Google Scholar 

  45. Kurosawa G, Takamatsu N, Takahashi M, et al. Organization and structure of Hox gene loci in medaka genome and comparison with those of pufferfish and zebrafish genomes. Gene, 2006, 370: 75–82

    PubMed  Article  CAS  Google Scholar 

  46. Meyer A, and Schartl M. Gene and genome duplications in vertebrates: the one-to-four(-to-eight in fish)rule and the evolution of novel gene functions. Curr Opin Cell Biol, 1999, 11(6): 699–704

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShunPing He.

Additional information

Supperted by the National Natural Science Foundation of China (Grant No. 30530120)

About this article

Cite this article

Guo, B., Li, J., Tong, C. et al. Cloning and sequence analysis of Sox genes in a tetraploid cyprinid fish, Tor douronensis . Chin. Sci. Bull. 53, 1988–1995 (2008). https://doi.org/10.1007/s11434-008-0277-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0277-6

Keywords

  • Tor douronensis
  • Sox gene
  • tetraploidy
  • genome duplication
  • gene diversity