Advertisement

Chinese Science Bulletin

, Volume 53, Issue 13, pp 1988–1995 | Cite as

Cloning and sequence analysis of Sox genes in a tetraploid cyprinid fish, Tor douronensis

  • BaoCheng Guo
  • JunBing Li
  • ChaoBo Tong
  • ShunPing He
Articles Animal Genetics

Abstract

A PCR survey for Sox genes in a young tetraploid fish Tor douronensis (Teleostei: Cyprinidae) was performed to access the evolutionary fates of important functional genes after genome duplication caused by polyploidization event. Totally 13 Sox genes were obtained in Tor douronensis, which represent SoxB, SoxC and SoxE groups. Phylogenetic analysis of Sox genes in Tor douronensis provided evidence for fish-specific genome duplication, and suggested that Sox19 might be a teleost specific Sox gene member. Sequence analysis revealed most of the nucleotide substitutions between duplicated copies of Sox genes caused by tetraploidization event or their orthologues in other species are silent substitutions. It would appear that the sequences are under purifying selective pressure, strongly suggesting that they represent functional genes and supporting selection against all null allele at either of two duplicated loci of Sox4a, Sox9a and Sox9b. Surprising variations of the intron length and similarities of two duplicated copies of Sox9a and Sox9b, suggest that Tor douronensis might be an allotetraploidy.

Keywords

Tor douronensis Sox gene tetraploidy genome duplication gene diversity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gubbay J, Collignon J, Koopman P, et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature, 1990, 346(6281): 245–250PubMedCrossRefGoogle Scholar
  2. 2.
    Bowles J, Schepers G, Koopman P. Phylogeny of the Sox family of developmental transcription factors based on sequence and structural indicators. Dev Biol, 2000, 227(2): 239–255PubMedCrossRefGoogle Scholar
  3. 3.
    Schepers G E, Teasdale R D, Koopman P. Twenty pairs of Sox: Extent, homology, and nomenclature of the mouse and human Sox transcription factor gene families. Dev Cell, 2002, 3(2): 167–170PubMedCrossRefGoogle Scholar
  4. 4.
    de Martino S, Yan Y L, Jowett T, et al. Expression of Sox11 gene duplicates in zebrafish suggests the reciprocal loss of ancestral gene expression patterns in development. Dev Dyn, 2000, 217(3): 279–292PubMedCrossRefGoogle Scholar
  5. 5.
    Koopman P, Schepers G, Brenner S, et al. Origin and diversity of the Sox transcription factor gene family: genome-wide analysis in Fugu Rubripes. Gene, 2004, 328: 177–186PubMedCrossRefGoogle Scholar
  6. 6.
    Ohno S. Evolution by Gene Duplication. New York: Springer-Verlag. 1970Google Scholar
  7. 7.
    Wolfe K H. Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet, 2001, 2(5): 333–341PubMedCrossRefGoogle Scholar
  8. 8.
    Comai L. The advantages and disadvantages of being polyploidy. Nat Rev Genet, 2005, 6(11): 836–846PubMedCrossRefGoogle Scholar
  9. 9.
    Holland P W, Garcia-Fernandez J, Williams N A, et al. Gene duplications and the origins of vertebrate development. Development, 1994, Suppl: 125–133Google Scholar
  10. 10.
    Skrabanek L, Wolfe K H. Eukaryote genome duplication — Where’s the evidence? Curr Opin Genet Dev, 1998, 8(6): 694–700PubMedCrossRefGoogle Scholar
  11. 11.
    Hughes A L, Friedman R. 2r or Not 2r: Testing hypotheses of genome duplication in early vertebrates. J Struct Funct Genom, 2003, 3(1–4): 85–93CrossRefGoogle Scholar
  12. 12.
    Amores A, Force A, Yan Y L, et al. Zebrafish Hox clusters and vertebrate genome evolution. Science, 1998, 282(5394): 1711–1714PubMedCrossRefGoogle Scholar
  13. 13.
    Christoffels A, Koh E G, Chia J M, et al. Fugu genome analysis provides evidence for a whole-Genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol, 2004, 21(6): 1146–1151PubMedCrossRefGoogle Scholar
  14. 14.
    Hoegg S, Brinkmann H, Taylor J S, et al. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost Fish. J Mol Evol, 2004, 59(2): 190–203PubMedCrossRefGoogle Scholar
  15. 15.
    Vandepoele K, De Vos W, Taylor J S, et al. Major events in the genome evolution of vertebrates: Paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci USA, 2004, 101(6): 1638–1643PubMedCrossRefGoogle Scholar
  16. 16.
    Crow K D, Stadler P F, Lynch V J, et al. The “fish-specific” Hox cluster duplication is coincident with the origin of teleosts. Mol Biol Evol, 2006, 23(1): 121–136PubMedCrossRefGoogle Scholar
  17. 17.
    LeComber S C, Smith C. Polyploidy in fishes: Patterns and processes. Biol J Linnean Soc, 2004, 82(4): 431–442CrossRefGoogle Scholar
  18. 18.
    Allendorf F W, Thorgaard G H. Tetraploidy and the evolution of salmonid fish. In: Turner J B, ed. Evolutionary Genetics of Fish. New York: Plenum Press, 1984. 1–53Google Scholar
  19. 19.
    Xiao H, Zhang R D, Feng J G, et al., Nuclear DNA content and ploidy of seventeen species of fishes in Sinocyclocheilus. Zoolog Res (in Chinese), 2002, 23(3): 195–199Google Scholar
  20. 20.
    Zan R, Song Z, Liu W. Studies on karyotypes and DNA contents of some Cyprinoid fishes, with notes on fish polyploids in China. In: Uyeno T, Arai R, Taniuchi T, et al, eds. Indo Pacific Fish Biology. Tokyo: Ichthyol Soc Japan, 1986. 877–885Google Scholar
  21. 21.
    Yu X J, Zhou T, Li Y C, et al. Chromosomes of Chinese Fresh-Water Fishes (in Chinese). Beijing: Science Press, 1989Google Scholar
  22. 22.
    Kellis M, Birren B W, Lander E S. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature, 2004, 428(6983): 617–624PubMedCrossRefGoogle Scholar
  23. 23.
    Maere S, de Bodt S, Raes J, et al. Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA, 2005, 102(15): 5454–5459PubMedCrossRefGoogle Scholar
  24. 24.
    Moore R C, Purugganan M D. The early stages of duplicate gene evolution. Proc Natl Acad Sci USA, 2003, 100(26): 15682–15687PubMedCrossRefGoogle Scholar
  25. 25.
    Akhunov E D, Akhunova A R, Dvorak J. Mechanisms and rates of birth and death of dispersed duplicated genes during the evolution of a multigene family in diploid and tetraploid wheats. Mol Biol Evol, 2007, 24(2): 539–550PubMedCrossRefGoogle Scholar
  26. 26.
    Brunet F G, Crollius H R, Paris M, et al. Gene loss and evolutionary rates following whole-genome duplication in teleost fishes. Mol Biol Evol, 2006, 23(9): 1808–1816PubMedCrossRefGoogle Scholar
  27. 27.
    Wang X Z, Li J B, He S P. Molecular evidence for the monophyly of East Asian groups of Cyprinidae (Teleostei: Cypriniformes) derived from the nuclear recombination activating gene 2 sequences. Mol Phylogenet Evol, 2007, 42(1): 157–170PubMedCrossRefGoogle Scholar
  28. 28.
    Chen Y Y. Fauna Sinica, Class Teleostei, Cypriniformes II (in Chinese). Beijing: Science Press. 1998Google Scholar
  29. 29.
    Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed. New York: Cold Spring Harbor Laboratory Press, 1989Google Scholar
  30. 30.
    Galay-Burgos M, Llewellyn L, Mylonas C C, et al. Analysis of the Sox Gene family in the european sea bass(Dicentrarchus Labrax). Comp Biochem Physiol B Biochem Mol Biol, 2004, 137(2): 279–284PubMedCrossRefGoogle Scholar
  31. 31.
    Thompson J D, Gibson T J, Plewniak F, et al. The Clustal_X Windows interface: Flexible strategies for multiple sequences alignment aided by quality analysis Tools. Nucleic Acids Res, 1997, 25(24): 4876–4882PubMedCrossRefGoogle Scholar
  32. 32.
    Tamura K, Dudley J, Nei M, et al. Mega 4: molecular evolutionary genetics analysis (Mega) software version 4.0. Mol Biol Evol, 2007, 24(8): 1596–1599PubMedCrossRefGoogle Scholar
  33. 33.
    Ronquist F, Huelsenbeck J P. Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformaties, 2003, 19(12): 1572–1574CrossRefGoogle Scholar
  34. 34.
    Posada D, Crandall K A. Modeltest: Testing the model of DNA substitution. Bioinformatics, 1998, 14(9): 817–818PubMedCrossRefGoogle Scholar
  35. 35.
    Campanella J, Bitincka L, Smalley J. Matgat: An application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics, 2003, 4(1): 29PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang J, Rosenberg H F, Nei M. Positive darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci USA, 1998, 95(7): 3708–3713PubMedCrossRefGoogle Scholar
  37. 37.
    Moghadam H K, Ferguson M M, Danzmann R G. Evidence for Hox gene duplication in rainbow trout (Oncorhynchus Mykiss): A tetraploid model species. J Mol Evol, 2005, 61(6): 804–818PubMedCrossRefGoogle Scholar
  38. 38.
    Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290(5494): 1151–1155PubMedCrossRefGoogle Scholar
  39. 39.
    Luo J, Stadler P F, He S P, et al. PCR survey of Hox genes in the goldfish Carassius auratus auratus. J Exp Zoolog B Mol Dev Evol, 2007, 308(3): 250–258PubMedCrossRefGoogle Scholar
  40. 40.
    Hughes M K, Hughes A L. Evolution of duplicate genes in a tetraploid animal, Xenopus Laevis. Mol Biol Evol, 1993, 10(6): 1360–1369PubMedGoogle Scholar
  41. 41.
    Tiffin P, Gaut B S. Sequence diversity in the tetraploid Zea Perennis and the closely related diploid Z. diploperennis: insights from four nuclear loci. Genetics, 2001, 158(1): 401–412PubMedGoogle Scholar
  42. 42.
    Vriz S, Lovell-Badge R. The zebrafish Zf-Sox 19 protein: a novel member of the Sox family which reveals highly conserved motifs outside of the DNA-binding domain. Gene, 1995, 153(2): 275–276PubMedCrossRefGoogle Scholar
  43. 43.
    Chiang E F, Pai C I, Wyatt M, et al. Two Sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. Dev Biol, 2001, 231(1): 149–163PubMedCrossRefGoogle Scholar
  44. 44.
    Kurosawa G, Yamada K, Ishiguro H, et al. Hox gene complexity in medaka fish may be similar to that in pufferfish rather than zebrafish. Biochem Biophys Res Commun, 1999, 260(1): 66–70PubMedCrossRefGoogle Scholar
  45. 45.
    Kurosawa G, Takamatsu N, Takahashi M, et al. Organization and structure of Hox gene loci in medaka genome and comparison with those of pufferfish and zebrafish genomes. Gene, 2006, 370: 75–82PubMedCrossRefGoogle Scholar
  46. 46.
    Meyer A, and Schartl M. Gene and genome duplications in vertebrates: the one-to-four(-to-eight in fish)rule and the evolution of novel gene functions. Curr Opin Cell Biol, 1999, 11(6): 699–704PubMedCrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  • BaoCheng Guo
    • 1
    • 2
  • JunBing Li
    • 1
    • 2
  • ChaoBo Tong
    • 1
    • 2
  • ShunPing He
    • 1
  1. 1.Institute of HydrobiologyChinese Academy of SciencesWuhanChina
  2. 2.Graduate University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations