Skip to main content
Log in

First-principles investigation of the impurity-kink interaction in bcc iron

  • Articles
  • Condensed State Physics
  • Published:
Chinese Science Bulletin

Abstract

Using the first-principles self-consistent discrete variational method based on density functional theory, we investigated the effect of light impurities C and N on the electronic structure of kink on the [100](010) edge dislocation (ED) in bcc iron. Our energetic calculations show that the light impurities have a strong segregation tendency to enter the kink. The results of the charge distribution and the local density of states indicate that the strong bonds between the impurity atoms and the neighboring Fe atoms are formed due to the hybridizations of impurity atoms 2p states and Fe 3d4s4p states. The introduction of light impurities can stabilize the kink system, and impedes the sideward motion of the kink in the [100](010) ED. This is, the light impurities induce a strong pinning effect on the [100](010) ED and may result in the solid solute hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cottrell A H. Effect of solute atoms on the behavior of dislocations. In: Mott N F, ed. Proceedings of the Conference on Strength of Solids, 1947, July 7–9. Bristol: The Physical Society London, 1948, 30–38

    Google Scholar 

  2. Cottrell A H, Bilby B A. Dislocation theory of yielding and strain ageing of iron. Proc Phys Soc London Sect A, 1949, 62: 49–62

    Article  Google Scholar 

  3. Miller M K, Beaven P A, Smith G D W. A study of the early stages of tempering of iron-carbon martensites by atom probe field ion microscopy. Metall Trans A, 1981, 12A: 1197–1204

    Google Scholar 

  4. Chang L, Barnard S J, Smith G D W. The segregation of carbon atoms to dislocations in low-carbon martensitic stell products: Studies by field ion microscopy and atom probe microsanalysis. In: Krauss G K, Repas P E, eds. Fundamentals of Aging and Tempering in Bainitic and Martensitic Steel Products. Warrendale, PA: ISS-AIME, 1992. 19–28

    Google Scholar 

  5. Wilde J, Cerezo A, Smith G D W. Three-dimensional atomic-scale mapping of a cottrell atmosphere around a dislocation in iron. Scr Mater, 2000, 43(1): 39–48

    Article  CAS  Google Scholar 

  6. Sung Y, Hong S Y, Anderson A B. Diffusion and surface segregation of carbon in α-Fe: Molecular-orbital theory. Phys Rev B, 1989, 40: 7508–7512

    Article  Google Scholar 

  7. Wu R Q, Freeman A J, Olson G B. First-principles determination of the effects of phosphorus and boron on iron grain boundary cohesion. Science, 1994, 265: 376–380

    Article  PubMed  CAS  Google Scholar 

  8. Geng W T, Freeman A J, Olson G B. Influence of alloying additions on grain boundary cohesion of transition metals: First-principles determination and its phenomenological extension. Phys Rev B, 2001, 63: 165415

    Google Scholar 

  9. Niu Y, Wang S Y, Zhao D L, et al. The electronic effect in the (100) edge dislocation core system with a carbon atom in α-iron: A first-principles study. J Phys: Cond Matt, 2001, 13: 4267–4276

    Article  CAS  Google Scholar 

  10. Niu Y, Wang S Y, Zhao D L, et al. The electronic effect of N impurity in an 〈100〉 edge dislocation core system in α-iron. Comp Mater Sci, 2001, 22: 144–150

    Article  CAS  Google Scholar 

  11. Yan J A, Wang C Y, Duan W H, et al. Electronic states and doping effect of carbon in the edge-dislocation core of bcc iron. Phys Rev B, 2004, 69: 214110

    Google Scholar 

  12. Chen Z Z, Wang C Y. First-principles study on the effect of impurities at the front of cracks in α-Fe. Phys Rev B, 2005, 72: 1041001

    Google Scholar 

  13. Tapasa K, Osetsky Y N, Bacon D J. Computer simulation of interaction of an edge dislocation with a carbon interstitial in a-iron and effects on glide. Acta Mater, 2007, 55: 93–104

    Article  CAS  Google Scholar 

  14. Hirth J P, Lothe J. Theory of Dislocations. New York: McGraw-Hill, 1968

    Google Scholar 

  15. Pink E, Arsenault R J. Low-temperature softening in body-centred cubic alloys. Prog Mater Sci, 1979, 24: 1–50

    Article  Google Scholar 

  16. Sato A M, Meshii M. Solid solution softening and solid solution hardening. Acta Metall, 1973, 21(6): 753–768

    Article  CAS  Google Scholar 

  17. Nemat-Nasser S, Kapoor R. Deformation behavior of tantalum and a tantalum tungsten alloy. Int J Plast, 2001, 17: 1351–1366

    Article  CAS  Google Scholar 

  18. Gornostyrev Y N, Katsnelson M I, Stroev A Y, et al. Impurity-kink interaction in the two-dimensional Frenkel-Kontorova model. Phys Rev B, 2005, 71: 094105

    Google Scholar 

  19. Wen M, Fukuyama S, Yokogawa K. Atomistic simulations of effect of hydrogen on kink-pair energetics of screw dislocations in bcc iron. Acta Mater, 2002, 51: 1767–1773

    Article  CAS  Google Scholar 

  20. Chen L Q, Qiu Z C, Wang C Y, et al. Electronic effect of boron impurity on the kink in bcc iron. J Alloys Comp, 2007, 428: 49–53

    Article  CAS  Google Scholar 

  21. Chen L Q, Qiu Z C. Electronic structure and doping effect of Ni and Co on a Kink in the edge dislocation of bcc iron. Defect Diff Forum, 2007, 261–262: 37–45

    Google Scholar 

  22. Chen L Q, Qiu Z C. Electronic structure of doping sulfur kink on the edge dislocation in iron. Acta Mett Sin, 2007, 43(10): 1015–1019

    CAS  Google Scholar 

  23. Chen L Q, Yu T, Wang C Y, et al. Effect of impurity P on electronic structure of kink in the edge dislocation of α-iron. Acta Phys Sin, 2008, 57(1): 443–447

    CAS  Google Scholar 

  24. Ellis D E, Benesh G A, Bykom E. Molecular cluster studies of binary alloys: LiAl. Phys Rev B, 1977, 16: 3308–3313

    Article  CAS  Google Scholar 

  25. Delley B, Ellis D E, Freeman A J. Binding energy and electronic structure of small copper particles. Phys Rev B, 1983, 27: 2132–2144

    Article  CAS  Google Scholar 

  26. Guenzburger D, Ellis D E. Magnetism of Fe impurities in alkaline-earth metals and Al. Phys Rev B, 1992, 45: 285–294

    Article  CAS  Google Scholar 

  27. Hohenberg P C, Kohn W. Inhomogeneous electron gas. Phys Rev, 1964, 136: 864–871

    Article  Google Scholar 

  28. Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140: 1133–1138

    Article  Google Scholar 

  29. Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys, 1990, 92: 508–517

    Article  CAS  Google Scholar 

  30. Chen L Q, Wang C Y, Yu T. Investigation of structure and energy of edge dislocation in bcc iron. Acta Phys Sin, 2006, 55(11): 5980–5986

    CAS  Google Scholar 

  31. Chen L Q, Wang C Y, Yu T. Electronic effect of kink in the edge dislocation in bcc iron: A first-principles study. J Appl Phys, 2006, 100: 023715

    Google Scholar 

  32. Chen L Q, Wang C Y, Yu T. Molecular dynamics simulation of kink in 〈100〉 edge dislocation in bcc iron. Chin Sci Bull, 2007, 52(16): 2291–2296

    Article  CAS  Google Scholar 

  33. Vosko S H, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can J Phys, 1980, 58: 1200–1211

    Article  CAS  Google Scholar 

  34. Wang C Y, Liu S Y, Han L G. Electronic structure of impurity (oxygen)-stacking-fault complex in nicke. Phys Rev B, 1990, 41: 1359–1367

    Article  CAS  Google Scholar 

  35. Wang C Y, An F, Gu B L, et al. Electronic structure of light-impurity-vacanty complex cluster in iron. Phys Rev B, 1988, 37: 3905–3912

    Article  Google Scholar 

  36. Wang C Y, Zhao D L. Electronic structure of Σ3[111] grain boundary and doping effect. Mater Res Soc Symp Proc, 1994, 318: 571–576

    CAS  Google Scholar 

  37. Wang F H, Wang C Y, Yang J L. The effect of boron electronic structure of grain boundaries in Ni3Al. J Phys: Cond Matter, 1996, 8: 5527–5534

    Article  CAS  Google Scholar 

  38. Barth L V, Hedin U. A local exchange-correlation potential for the spin polarized case. J Phys C: Solid State Phys, 1972, 5: 1629–1642

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yu.

Additional information

Supported by National Basic Research Program of China (Grant No. 2006CB605102) and National Natural Science Foundation of China (Grant No. 90306016)

About this article

Cite this article

Yu, T., Chen, L., Wang, C. et al. First-principles investigation of the impurity-kink interaction in bcc iron. Chin. Sci. Bull. 53, 1796–1803 (2008). https://doi.org/10.1007/s11434-008-0256-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0256-y

Keywords

Navigation