Skip to main content
Log in

Baculovirus-mediated expression of a Chinese scorpion neurotoxin improves insecticidal efficacy

  • Articles
  • Molecular Virology
  • Published:
Chinese Science Bulletin

Abstract

An Buthus martensii Karsch Insect Toxin (BmK IT) gene was inserted into the genome of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) to construct a recombinant baculovirus, AcMNPV-BmK IT. The expression of BmK IT was confirmed using RT-PCR, dot blot and SDS-PAGE analysis. Dose-lethal time responses to Spodoptera exigua larvae were compared between wild-type baculovirus AcMNPV and recombinant virus AcMNPV-BmK IT. At the concentration of 1 × 107 PlBs/mL, the median lethal time of recombinant baculovirus (LT50 = 73.6 h) on third instar S. exigua larvae showed an improvement of 13.2% over the efficacy of wild type virus (LT50 = 84.8 h) during a 192 h infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Black B C, Brennan L A, Dierks P M, et al. Commercialization of baculoviral insecticides. In: Miller L K, ed. The Baculoviruses. New York: Plenum Press, 1997

    Google Scholar 

  2. Cory J S, Hails R S. The ecology and biosafety of baculoviruses. Curr Opin Biotechnol, 1997, 8: 323–327

    Article  PubMed  CAS  Google Scholar 

  3. Heinz K M, McCutchen B F, Herrmann R, et al. Direct effects of recombinant nuclear polyhedrosis viruses on selected non-target organisms. J Econ Entomol, 1995, 88: 259–264

    PubMed  CAS  Google Scholar 

  4. Inceoglu A B, Kamita S G, Hammock B D. Genetically modified baculoviruses: A historical overview and future outlook. Adv Virus Res, 2006, 68: 323–360

    Article  PubMed  CAS  Google Scholar 

  5. Bonning B C, Hammock B D. Development of recombinant baculoviruses for insect control. Ann Rev Entomol, 1996, 41: 191–210

    Article  CAS  Google Scholar 

  6. Hammock B D, Bonning B C, Possee R D, et al. Expression and effects of the juvenile hormone esterase in a baculovirus vector. Nature, 1990, 44: 458–461

    Article  Google Scholar 

  7. Harrison R L, Bonning B C. Use of scorpion neurotoxins to improve the insecticidal activity of Rachiplusia ou Multicapsid Nucleopolyhedrovirus. Biol Control, 2000, 17: 191–201

    Article  CAS  Google Scholar 

  8. Harrison R L, Bonning B C. Use of proteases to improve the insecticidal activity of baculoviruses. Biol Control, 2001, 20: 199–209

    Article  CAS  Google Scholar 

  9. Krapcho K J, Kral R M, Vanwagenen B C, et al. Characterization and cloning of insecticidal peptides from the primitive weaving spider Diguelia Canties. Insect Biochem Mol Biol, 1995, 25991–26000

  10. Maeda S. Increased insecticidal effect by a recombinant baculovirus carrying a synthetic diuretic hormone gene. Biochem Biophys Res, 1989, 165: 1177–1183

    Article  CAS  Google Scholar 

  11. O’Reilly D R, Miller L K. Improvement of a baculovirus pesticide by deletion of the egt gene. Biotechnology, 1991, 9: 1086–1089

    Article  CAS  Google Scholar 

  12. Rajendra W, Hackett K J, Buckley E, et al. Functional expression of lepidopteran-selective neurotoxin in baculovirus: Potential for effective pest managenent. Biochim Biophys Acta, 2006, 1760: 158–163

    PubMed  CAS  Google Scholar 

  13. Stewart L M D, Hirst M, Ferber M L, et al. Construction of an improved baculovirus insecticide containing an insect-specific toxin gene. Nature, 1991, 352: 85–88

    Article  PubMed  CAS  Google Scholar 

  14. McCutchen B F, Choudary P V, Crenshaw R, et al. Development of a recombinant baculovirus expressing an insect-selective neurotoxin: Potential for pest control. Biotechnology, 1991, 9: 848–852

    Article  CAS  Google Scholar 

  15. Chejanovsky N, Zilberberg N, Rivkin H, et al. Functional expression of an alpha anti-insect scorpion neurotoxin in insect cells and lepidopterous larvae. FEBS Lett, 1995, 376: 181–184

    Article  PubMed  CAS  Google Scholar 

  16. Gershburg E, Stockholm D, Froy O, et al. Baculovirus-mediated expression of a scorpion depressant toxin improves the insecticidal efficacy achieved with excitatory toxins. FEBS Lett, 1998, 422: 132–136

    Article  PubMed  CAS  Google Scholar 

  17. Jinn T R, Tu W C, Lu C I, et al. Enhancing insecticidal efficacy of baculovirus by early expressing an insect neurotoxin, LqhIT2, in infected Trichoplusia ni larvae. Appl Mircobiol Biotechnol, 2006, 72: 1247–1253

    Article  CAS  Google Scholar 

  18. Regev A, Rivkin H, Inceoglu B, et al. Further enhancement of baculovirus insecticidal efficacy with scorpion toxins that interact cooperatively. FEBS Lett, 2003, 537: 106–110

    Article  PubMed  CAS  Google Scholar 

  19. Van B N, Hughes P R. Effect of signal sequence and promoter on the speed of action of a genetically modified Autographa californica nucleopolyhedrovirus expressing the scorpion toxin LqhIT2. Biol Control, 2003, 27: 53–64

    Article  Google Scholar 

  20. Liang A H, Li X L, Su Z G, et al. Cloning and sequencing of an excitatory insect-selective neurotoxin BmK IT cDNA from Buthus martensii Karsch (In Chinese). High Tech Lett, 1999, 9: 12–15

    Google Scholar 

  21. Hao C J, Xu C G, Wang W, et al. Expression of an insect excitatory toxin, BmK IT, from the scorpion, Buthus martensii Karsch, and its biological activity. Biotechnology Lett, 2005, 27: 1929–1934

    Article  CAS  Google Scholar 

  22. Summers M D, Smith G E. A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures. Bull: Tex Agric Exp Stn, 1987

    Google Scholar 

  23. Kamita S G, Kang K D, Hammock B D, et al. Comprehensive Molecular Insect Science. Oxford: Elsevier Pergamon, 2005

    Google Scholar 

  24. Tuan S J, Hou R J, Kao S S, et al. Improved plant protective efficacy of a baculovirus using an early promoter to drive insect-specific neurotoxin expression. Bot Bull Acad Sin, 2005, 46: 11–20

    CAS  Google Scholar 

  25. King L A, Possee R D. A Laboratory Guide. London: Chapman & Hall, 1992

    Google Scholar 

  26. Johnson R, Meidinger R G, Iatrou K. A cellular promoter-based expression cassette for generating recombinant baculoviruses directing rapid expression of passenger genes in infected insects. Virology, 1992, 190: 815–823

    Article  PubMed  CAS  Google Scholar 

  27. Miller L K. Baculovirus as gene expression vectors. Rev Microbiol, 1988, 42: 177–199

    Article  CAS  Google Scholar 

  28. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem, 1987, 162: 156–159

    Article  PubMed  CAS  Google Scholar 

  29. Campbell M J. Lipofection reagents prepared by a simple ethanol injection technique. Biotechniques, 1995, 18: 1027–1032

    PubMed  CAS  Google Scholar 

  30. Cory J S, Hirst M L, William T, et al. Field trial of a genetically improved baculovirus insecticide. Nature, 1994, 370: 138–140

    Article  Google Scholar 

  31. Hughes P R, Van-Beek N A, Wood H A. A modified droplet feeding method for rapid assay of Bacillus thuringiensis and baculoviruses in noctuid larvae. J Invertebr Pathol, 1986, 48: 187–192

    Article  Google Scholar 

  32. Adjadj E, Naudat V, Quiniou E, et al. Solution structure of Lqh-8/6, a toxin-like peptide from a scorpion venom structural homogeneity induced by proline cis/trans isomerization. Eur J Biochem, 1997, 246: 218–227

    Article  PubMed  CAS  Google Scholar 

  33. Bel Haj Rhouma R, Cérruti-Duonor M, Benkhadir K, et al. Insecticidal effects of Buthus occitanus tunetanus BotIT6 toxin expressed in Escherichia coli and baculovirus/insect cells. J Insect Physiol, 2005, 51: 1376–1383

    Article  PubMed  CAS  Google Scholar 

  34. Chang J H, Choi J Y, Jin B R, et al. An improved baculovirus insecticide producing occlusion bodies that contain Bacillus thuringiensis insect toxin. J Invertebr Pathol, 2003, 84: 30–37

    Article  PubMed  CAS  Google Scholar 

  35. Gordon D, Moskowitz H, Eitan M, et al. Localization of receptor sites for insect-selective toxins on sodium channels by site-directed antibodies. Biochemistry, 1992, 31: 7622–7628

    Article  PubMed  CAS  Google Scholar 

  36. Popham Holly J R, Prikhod’ko G G, Felcetto T J, et al. Effect of Deltamethrin treatment on lepidopteran larvae infected with baculoviruses expressing insect-selective toxins: U-aga-IV, AsII and ShI. Biol Control, 1998, 12: 79–87

    Article  Google Scholar 

  37. Wudayagiri R, Inceoglu A B, Herrmann R, et al. Isolation and characterization of a novel lepidopteran-selective toxin from the venom of South Indian red scorpion, Mesobuthus tamulus. BMC Biochem, 2001, 2: 16–23

    Article  CAS  Google Scholar 

  38. Hammock B D. Minimizing chronic exposure of humans and the environment In: Kuhr R J, Motoyama N, eds. Pesticides And The Future. Amsterdam: IOS Press, 1998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AiHua Liang.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 30670282 and 30700534) and the Department of Science and Technology of Shanxi Province

About this article

Cite this article

Fan, X., Zheng, B., Fu, Y. et al. Baculovirus-mediated expression of a Chinese scorpion neurotoxin improves insecticidal efficacy. Chin. Sci. Bull. 53, 1855–1860 (2008). https://doi.org/10.1007/s11434-008-0242-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0242-4

Keywords

Navigation