Skip to main content
Log in

A novel strategy for cancer treatment: Targeting cancer stem cells

  • Review
  • Cell Biology
  • Published:
Chinese Science Bulletin

Abstract

Cancer stem cell/tumor-initiating cell (CSC/TIC) is a subclass of cancer cells possessing parts of properties of normal stem cell. It has a high capacity of proliferation and plays a pivotal role in tumor recurrence and tumor resistance to radiotherapy and chemotherapy. At present, small molecule inhibitors and fusion proteins are widely used in the CSC-targeting strategy. Gene-virotherapy, which uses oncolytic adenovirus as a vector to mediate the expression of therapeutic gene, shows a significant superiority to other regimens of cancer treatment and has a good efficacy in the treatment of solid tumors. Thus, it is a promising choice to apply gene-virotherapy into the CSC-targeting treatment. Based on the molecular mechanism underlying CSC self-renewal, a series of effective strategies for targeting CSC have been established. This review will summarize the recent research progresses on CSC-targeting treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994, 367(6464): 645–648

    Article  PubMed  CAS  Google Scholar 

  2. Al-Hajj M, Wicha M S, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA, 2003, 100(7): 3983–3988

    Article  PubMed  CAS  Google Scholar 

  3. O’Brien C A, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 2007, 445(7123): 106–110

    Article  PubMed  CAS  Google Scholar 

  4. Ho M M, Ng A V, Lam S, et al. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res, 2007, 67(10): 4827–4833

    Article  PubMed  CAS  Google Scholar 

  5. Kim C F, Jackson E L, Woolfenden A E, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 2005, 121(6): 823–835

    Article  PubMed  CAS  Google Scholar 

  6. Miki J, Furusato B, Li H, et al. Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res, 2007, 67(7): 3153–3161

    Article  PubMed  CAS  Google Scholar 

  7. Collins A T, Berry P A, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res, 2005, 65(23): 10946–10951

    Article  PubMed  CAS  Google Scholar 

  8. Xin L, Lawson D A, Witte O N. The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci USA, 2005, 102(19): 6942–6947

    Article  PubMed  CAS  Google Scholar 

  9. Patrawala L, Calhoun T, Schneider-Broussard R, et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res, 2005, 65(14): 6207–6219

    Article  PubMed  CAS  Google Scholar 

  10. Ricci-Vitiani L, Lombardi D G, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature, 2007, 445(7123): 111–115

    Article  PubMed  CAS  Google Scholar 

  11. Dalerba P, Dylla S J, Park I K, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA, 2007, 104(24): 10158–10163

    Article  PubMed  CAS  Google Scholar 

  12. Singh S K, Hawkins C, Clarke I D, et al. Identification of human brain tumour initiating cells. Nature, 2004, 432(7015): 396–401

    Article  PubMed  CAS  Google Scholar 

  13. Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell, 2007, 11(1): 69–82

    Article  PubMed  CAS  Google Scholar 

  14. Hemmati H D, Nakano I, Lazareff J A, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA, 2003, 100(25): 15178–15183

    Article  PubMed  CAS  Google Scholar 

  15. Beier D, Hau P, Proescholdt M, et al. CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res, 2007, 67(9):4010–4015

    Article  PubMed  CAS  Google Scholar 

  16. Seigel G M, Hackam A S, Ganguly A, et al. Human embryonic and neuronal stem cell markers in retinoblastoma. Mol Vis, 2007, 13: 823–832

    PubMed  CAS  Google Scholar 

  17. Zhou L, Wei X, Cheng L, et al. CD133, one of the markers of cancer stem cells in Hep-2 cell line. Laryngoscope, 2007, 117(3): 455–460

    Article  PubMed  CAS  Google Scholar 

  18. Yin S, Li J, Hu C, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer, 2007, 120(7):1444–1450

    Article  PubMed  CAS  Google Scholar 

  19. Monzani E, Facchetti F, Galmozzi E, et al. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer, 2007, 43(5): 935–946

    Article  PubMed  CAS  Google Scholar 

  20. Frank N Y, Margaryan A, Huang Y, et al. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res, 2005, 65(10): 4320–4333

    Article  PubMed  CAS  Google Scholar 

  21. Olempska M, Eisenach P A, Ammerpohl O, et al. Detection of tumor stem cell markers in pancreatic carcinoma cell lines. Hepatobiliary Pancreat Dis Int, 2007, 6(1): 92–97

    PubMed  CAS  Google Scholar 

  22. Li C, Heidt D G, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res, 2007, 67(3): 1030–1037

    Article  PubMed  CAS  Google Scholar 

  23. Wang J, Guo L P, Chen L Z, et al. Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res, 2007, 67(8): 3716–3724

    Article  PubMed  CAS  Google Scholar 

  24. Phillips T M, McBride W H, Pajonk F. The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst, 2006, 98(24): 1777–1785

    PubMed  Google Scholar 

  25. Fiegel H C, Gluer S, Roth B, et al. Stem-like cells in human hepatoblastoma. J Histochem Cytochem, 2004, 52(11): 1495–1501

    Article  PubMed  CAS  Google Scholar 

  26. Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA, 2004, 101(3): 781–786

    Article  PubMed  CAS  Google Scholar 

  27. Reya T, Morrison S J, Clarke M F, et al. Stem cells, cancer, and cancer stem cells. Nature, 2001, 414(6859): 105–111

    Article  PubMed  CAS  Google Scholar 

  28. Guzman M L, Swiderski C F, Howard D S, et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci USA, 2002, 99(25): 16220–16225

    Article  PubMed  CAS  Google Scholar 

  29. Guzman M L, Rossi R M, Karnischky L, et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood, 2005, 105(11): 4163–4169

    Article  PubMed  CAS  Google Scholar 

  30. Phatak P, Cookson J C, Dai F, et al. Telomere uncapping by the G-quadruplex ligand RHPS4 inhibits clonogenic tumour cell growth in vitro and in vivo consistent with a cancer stem cell targeting mechanism. Br J Cancer, 2007, 96(8): 1223–1233

    Article  PubMed  CAS  Google Scholar 

  31. Zheng X, Seshire A, Ruster B, et al. Arsenic but not all-trans retinoic acid overcomes the aberrant stem cell capacity of PML/RARalphapositive leukemic stem cells. Haematologica, 2007, 92(3): 323–331

    Article  PubMed  CAS  Google Scholar 

  32. Du X, Ho M, Pastan I. New immunotoxins targeting CD123, a stem cell antigen on acute myeloid leukemia cells. J Immunother, 2007, 30(6): 607–613

    Article  PubMed  CAS  Google Scholar 

  33. Feuring-Buske M, Frankel A E, Alexander R L, et al. A diphtheria toxin-interleukin 3 fusion protein is cytotoxic to primitive acute myeloid leukemia progenitors but spares normal progenitors. Cancer Res, 2002, 62(6): 1730–1736

    PubMed  CAS  Google Scholar 

  34. Clement V, Sanchez P, de Tribolet N, et al. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol, 2007, 17(2): 165–172

    Article  PubMed  CAS  Google Scholar 

  35. Edelstein M L, Abedi M R, Wixon J, et al. Gene therapy clinical trials worldwide 1989–2004-an overview. J Gene Med, 2004, 6(6): 597–602

    Article  PubMed  Google Scholar 

  36. Kafri T, Blomer U, Peterson D A, et al. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat Genet, 1997, 17(3): 314–317

    Article  PubMed  CAS  Google Scholar 

  37. Higashikawa F, Chang L. Kinetic analyses of stability of simple and complex retroviral vectors. Virology, 2001, 280(1): 124–131

    Article  PubMed  CAS  Google Scholar 

  38. Xu K, Ma H, McCown T J, et al. Generation of a stable cell line producing high-titer self-inactivating lentiviral vectors. Mol Ther, 2001, 3(1): 97–104

    Article  PubMed  CAS  Google Scholar 

  39. Seth P. Vector-mediated cancer gene therapy: an overview. Cancer Biol Ther, 2005, 4(5): 512–517

    Article  PubMed  CAS  Google Scholar 

  40. Heise C, Sampson-Johannes A, Williams A, et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med, 1997, 3(6): 639–645

    Article  PubMed  CAS  Google Scholar 

  41. Zhang Z L, Zou W G, Luo C X, et al. An armed oncolytic adenovirus system, ZD55-gene, demonstrating potent antitumoral efficacy. Cell Res, 2003, 13(6): 481–489

    Article  PubMed  CAS  Google Scholar 

  42. Jiang H, Gomez-Manzano C, Aoki H, et al. Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J Natl Cancer Inst, 2007, 99(18): 1410–1414

    Article  PubMed  CAS  Google Scholar 

  43. Armanios M, Greider C W. Telomerase and cancer stem cells. Cold Spring Harb Symp Quant Biol, 2005, 70: 205–208

    Article  PubMed  CAS  Google Scholar 

  44. Zhang Q, Nie M, Sham J, et al. Effective gene-viral therapy for telomerase-positive cancers by selective replicative-competent adenovirus combining with endostatin gene. Cancer Res, 2004, 64(15): 5390–5397

    Article  PubMed  CAS  Google Scholar 

  45. Zou W, Luo C, Zhang Z, et al. A novel oncolytic adenovirus targeting to telomerase activity in tumor cells with potent. Oncogene, 2004, 23(2): 457–464

    Article  PubMed  CAS  Google Scholar 

  46. Ko D, Hawkins L, Yu D C. Development of transcriptionally regulated oncolytic adenoviruses. Oncogene, 2005, 24(52): 7763–7774

    Article  PubMed  CAS  Google Scholar 

  47. Massard C, Deutsch E, Soria J C. Tumour stem cell-targeted treatment: Elimination or differentiation. Ann Oncol, 2006, 17(11): 1620–1624

    Article  PubMed  CAS  Google Scholar 

  48. Fan X, Matsui W, Khaki L, et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res, 2006, 66(15): 7445–7452

    Article  PubMed  CAS  Google Scholar 

  49. Verma U N, Surabhi R M, Schmaltieg A, et al. Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clin Cancer Res, 2003, 9(4): 1291–1300

    PubMed  CAS  Google Scholar 

  50. Castaigne S, Chomienne C, Daniel M T, et al. All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results. Blood, 1990, 76(9): 1704–1709

    PubMed  CAS  Google Scholar 

  51. Munster P N, Troso-Sandoval T, Rosen N, et al. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res, 2001, 61(23): 8492–8497

    PubMed  CAS  Google Scholar 

  52. Aguado T, Carracedo A, Julien B, et al. Cannabinoids induce glioma stem-like cell differentiation and inhibit gliomagnesis. J Biol Chem, 2007, 282(9): 6854–6862

    Article  PubMed  CAS  Google Scholar 

  53. Piccirillo S G, Reynolds B A, Zanetti N, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature, 2006, 444(7120): 761–765

    Article  PubMed  CAS  Google Scholar 

  54. Jin L, Hope K J, Zhai Q, et al. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med, 2006, 12(10): 1167–1174

    Article  PubMed  CAS  Google Scholar 

  55. Zhang Y A, Nemunaitis J, Samuel S K, et al. Antitumor activity of an oncolytic adenovirus-delivered oncogene small interfering RNA. Cancer Res, 2006, 66(19): 9736–9743

    Article  PubMed  CAS  Google Scholar 

  56. Lebedeva I V, Sarkar D, Su Z Z, et al. Molecular target-based therapy of pancreatic cancer. Cancer Res, 2006, 66(4): 2403–2413

    Article  PubMed  CAS  Google Scholar 

  57. Bao S, Wu Q, McLendon R E, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006, 444(7120): 756–760

    Article  PubMed  CAS  Google Scholar 

  58. Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer, 2006, 5: 67

    Article  PubMed  CAS  Google Scholar 

  59. Reynolds P, Dmitriev I, Curiel D. Insertion of an RGD motif into the HI loop of adenovirus fiber protein alters the distribution of transgene expression of the systemically administered vector. Gene Ther, 1999, 6(7): 1336–1339

    Article  PubMed  CAS  Google Scholar 

  60. Roberts D M, Nanda A, Havenga M J, et al. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature, 2006, 441(7090): 239–243

    Article  PubMed  CAS  Google Scholar 

  61. Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature, 2003, 423(6937): 255–260

    Article  PubMed  CAS  Google Scholar 

  62. Yilmaz O H, Valdez R, Theisen B K, et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature, 2006, 441(7092): 475–482

    Article  PubMed  CAS  Google Scholar 

  63. Ayyanan A, Civenni G, Ciarloni L, et al. Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proc Natl Acad Sci USA, 2006, 103(10): 3799–3804

    Article  PubMed  CAS  Google Scholar 

  64. Pan Q W, Cai R, Liu X Y, et al. A novel strategy for cancer gene therapy: RNAi. Chin Sci Bull, 2006, 51(10): 1145–1151

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 30730104), and Zhejiang Province Sci-Tech Supporting and Leading Program (Grant No. 2007C33027)

About this article

Cite this article

Liu, J., Ma, L., Wang, Y. et al. A novel strategy for cancer treatment: Targeting cancer stem cells. Chin. Sci. Bull. 53, 1777–1783 (2008). https://doi.org/10.1007/s11434-008-0241-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0241-5

Key words

Navigation