Skip to main content
Log in

Catalytic effect and reaction mechanism of Ti doped in NaAlH4: A review

  • Review
  • Materials Science
  • Published:
Chinese Science Bulletin

Abstract

Catalytic effect and hydrogen reaction mechanism of Ti doped in NaAlH4 were elaborated in this paper, and current viewpoints about Ti active species in hydrogen reaction were discussed. In a further step, the possibility and practicality of the hydrogen reaction mechanism of Ti-doped NaAlH4 were elucidated. They could be summarized as follows: while the current theory about the hydrogen reaction mechanism of Ti-doped NaAlH4 should be further improved and modified, the research on Ti-doped NaAlH4 would be a recommendable pattern for the catalyst research in other metal complex hydrides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogdanovic B, Schwickardi M. Ti-doped alkali metal aluminum hydrides as potential novel reversible hydrogen storage materials. J Alloys Compd, 1997, 253–254: 1–9

    Article  Google Scholar 

  2. Jensen C M, Zidan R, Mariels N, et al. Advanced titanium doping of sodium aluminum hydride-segue to a practical hydrogen storage material. Int J Hydrogen Energy, 1999, 24: 461–465

    Article  CAS  Google Scholar 

  3. Bogdanovic B, Brand R, Marjanović A, et al. Metal-doped sodium aluminum hydrides as potential new hydrogen storage materials. J Alloys Compd, 2000, 302: 36–58

    Article  CAS  Google Scholar 

  4. Sandrock G, Gross K, Thomas G. Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanates. J Alloys Compd, 2002, 339: 299–308

    Article  CAS  Google Scholar 

  5. Sandrock G, Gross K, Thomas G, et al. Catalyzed alanates for hydrogen storage. J Alloys Compd, 2002, 330–332: 683–690

    Google Scholar 

  6. Anton D L. Hydrogen desorption kinetics in transition metal modified NaAlH4. J Alloys Compd, 2003, 356–357: 400–404

    Article  Google Scholar 

  7. Stefan K, Klaus S, Tobias K. Catalytic properties of high surface area titanium nitride materials. J Mol Cat A, 2004, 208: 291–296

    Article  Google Scholar 

  8. Bogdanovie B, Felderhoff M, Kaskel S B, et al. Improved hydrogen storage properties of Ti-doped sodium alanate using titanium nanoparticles as doping agents. Adv Mater, 2003, 15: 1012–1015

    Article  Google Scholar 

  9. Zaluska A, Zaluski L. New catalytic complexes for metal hydride systems. J Alloys Compd, 2005, 404–406: 706–711

    Article  Google Scholar 

  10. Bogdanovic B, Felderhoff M, Pommerin A, et al. Advanced hydrogen-storage materials based on Sc-, Ce-, and Pr-doped NaAlH4. Adv Mater, 2006, 18: 1198–1201

    Article  CAS  Google Scholar 

  11. Wang P, Kang X D, Cheng H M. KH+Ti co-doped NaAlH4 for high-capacity hydrogen storage. J Appl Phys, 2005, 98: 074905

    Google Scholar 

  12. Pukazhselvan D, Sterlin M, Leo H, et al. Investigations on the desorption kinetics of Mm-doped NaAlH4. J Alloys Compd, 2007, 439: 243–248

    Article  Google Scholar 

  13. Lee G J, Shim J H, Cho Y W, et al. Reversible hydrogen storage in NaAlH4 catalyzed with lanthanide oxides. Int J Hydrogen Energy, 2007, 32: 1911–1915

    Article  CAS  Google Scholar 

  14. Chaudhuri S, Graetz J, Ignatov A, et al. Understanding the role of Ti in reversible hydrogen storage as sodium alanate: A combined experimental and density functional theoretical approach. J Am Chem Soc, 2006, 128: 11404–11415

    Article  PubMed  CAS  Google Scholar 

  15. Kang X D, Wang P, Cheng H M. Improving hydrogen storage performance of NaAlH4 by novel two-step milling method. J Phys Chem C, 2007, 111: 4879–4884

    Article  CAS  Google Scholar 

  16. Graetz J, Reilly J J, Johnson J, et al. X-ray absorption study of Ti-activated sodium aluminum hydride. Appl Phys Lett, 2004, 85: 500–502

    Article  CAS  Google Scholar 

  17. Léon A, Kircher O, Rothe J, et al. Chemical state and local structure around Titanium atoms in NaAlH4 doped with TiCl3 using X-ray absorption spectroscopy. J Phys Chem B, 2004, 108: 16372–16376

    Article  Google Scholar 

  18. Íñigueza J, Yildirim T. First-principles study of Ti-doped sodium alanate surfaces. Appl Phys Lett, 2005, 86: 103109

    Google Scholar 

  19. Íñiguez J, Yildirim T, Udovic T J, et al. Structure and hydrogen dynamics of pure and Ti-doped sodium alanate. Phys Rev B, 2004, 70: 060101

    Google Scholar 

  20. Bogdanovic B, Felderhoff M, Germann M, et al. Investigation of hydrogen discharging and recharging processes of Ti-doped NaAlH4 by X-ray diffraction analysis (XRD) and solid-state NMR spectroscopy. J Alloys Compd, 2003, 350: 246–253

    Article  CAS  Google Scholar 

  21. Chaudhuri S, Muckerman J T. First-principles study of Ti-catalyzed hydrogen chemisorption on an Al surface: A critical first step for reversible hydrogen storage in NaAlH4. J Phys Chem B, 2005, 109: 6952–6957

    Article  PubMed  CAS  Google Scholar 

  22. Adli A S, Shutthanandan V, Shivaparan N R, et al. Epitaxial growth of fcc Ti films on Al (001) surfaces. Phys Rev B, 1997, 56: 9841–9847

    Article  Google Scholar 

  23. Stumpf R. H-induced reconstruction and faceting of Al surfaces. Phys Rev Lett, 1997, 78: 4454–4457

    Article  CAS  Google Scholar 

  24. Fang F, Zhang J, Zhu J, et al. Nature and role of Ti species in the hydrogenation of a NaH/Al mixture. J Phys Chem C, 2007, 111: 3476–3480

    Article  CAS  Google Scholar 

  25. Fang F, Zhang J, Zhu J, et al. Rehydrogenation of the decomposed NaAlH4. Acta Metall Sin, 2007, 43(1): 96–98

    CAS  Google Scholar 

  26. Lee E K, Cho Y W, Yoon J K. Ab-initio calculations of titanium solubility in NaAlH4 and Na3AlH6. J Alloys Compd, 2006, 416: 245–249

    Article  CAS  Google Scholar 

  27. Graham D D, Culnane L F, Sulic M, et al. Ti EELS standards for identification of catalytic species in NaAlH4 hydrogen storage materials. J Alloys Compd, in press

  28. Herberg J L, Maxwell R S, Majzoub E H. 27Al and 1H MAS NMR and 27Al multiple quantum studies of Ti-doped NaAlH4. J Alloys Compd, 2006, 417: 39–46

    Article  CAS  Google Scholar 

  29. Cornelis P, van Bald’e A M J, der Eerden, et al. On the local structure of Ti during in situ desorption of Ti(OBu)4 and TiCl3 doped NaAlH4. J Alloys Compd, 2005, 393: 252–263

    Article  Google Scholar 

  30. Cantelli R, Palumbo O, Paolone A, et al. Dynamics of defects in alanates. J Alloys Compd, in press

  31. Kang X D, Wang P, Cheng H M. Advantage of TiF3 over TiCl3 as a dopant precursor to improve the thermodynamic property of Na3AlH6. J Alloys Compd, 2007, 56: 361–364

    CAS  Google Scholar 

  32. Yin L C, Wang P, Kang X D, et al. Functional anion concept: Effect of fluorine anion on hydrogen storage of sodium alanate. Phys Chem Chem Phys, 2007, 9(12): 1499–1502

    Article  PubMed  CAS  Google Scholar 

  33. Wang P, Kang X D, Cheng H M. Improved hydrogen storage of TiF3-doped NaAlH4. ChemPhysChem, 2005, 6(12): 2488–2491

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YunGui Chen.

About this article

Cite this article

Wang, Q., Chen, Y., Wu, C. et al. Catalytic effect and reaction mechanism of Ti doped in NaAlH4: A review. Chin. Sci. Bull. 53, 1784–1788 (2008). https://doi.org/10.1007/s11434-008-0234-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0234-4

Keywords

Navigation