Skip to main content
Log in

Neutral dissociation of methane in the ultra-fast laser pulse

  • Articles
  • Optics
  • Published:
Chinese Science Bulletin

Abstract

Neutral fragments of methane were performed using femetosecond laser at an intensity of 1013–14 W/cm2. A new mechanism of neutral dissociation is proposed in this work. The methane molecule is excited to super-excited states, in which it would dissociate into neutral fragments. We made Morse type potential energy surfaces for the super-excited molecules. Furthermore, we investigated the dissociation dynamics of the super-excited states by using quasi-classical trajectory (QCT) method. The results thus interpret the neutral dissociation of the methane molecule in the ultra-fast laser pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chin S L. From multiphoton to tunnel ionization. In: Lin S H, Vil-laeys A A, Fujimura Y, eds. Advances in Multiphoton Processes and Spectroscopy. Singapore: World Scientific, 2004. 249–272

    Google Scholar 

  2. Tang X P, Wang S F, Elshakre M E, et al. The field-assisted stepwise dissociation of acetone in an intense femtosecond laser field. J Phys Chem A, 2003, 107: 13–18

    Article  CAS  Google Scholar 

  3. Wang S F, Tang X P, Gao L R, et al. Dissociation of methane in intense laser fields. J Phys Chem A, 2003, 107: 6123–6129

    Article  CAS  Google Scholar 

  4. Elshakre M E, Gao L R, Tang X P, et al. Dissociation of acetaldehyde in intense laser field: Coulomb explosion or field-assisted dissociation? J Chem Phys, 2003, 119: 5397–5405

    Article  CAS  Google Scholar 

  5. Luo Q, Xu H L, Hosseini S A, et al. Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy. Appl Phys B, 2006, 82: 105–109

    Article  CAS  Google Scholar 

  6. Xu H L, Daigle J F, Luo Q, et al. Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane. Appl Phys B, 2006, 82: 655–658

    Article  CAS  Google Scholar 

  7. Gravel J F, Luo Q, Boudreau D, et al. Sensing of halocarbons using femtosecond laser-induced fluorescence. Anal Chem, 2004, 76: 4799–4805

    Article  PubMed  CAS  Google Scholar 

  8. Kong F A, Luo Q, Xu H L, et al. Explosive photodissociation of methane induced by ultrafast intense laser. J Chem Phys, 2006, 125: 133320

    Google Scholar 

  9. Furuya K, Ishikawa K, Ogawa T. Mass analysis of polyatomic high-Rydberg fragments produced by electron impact on methane. Chem Phys Lett, 2000, 319: 335–340

    Article  CAS  Google Scholar 

  10. Kato M, Kameta K, Odagiri T, et al. Single-hole one-electron super-excited states and doubly excited states of methane in the vacuum ultraviolet range as studied by dispersed fluorescence spectroscopy. J Phys B: At Mol Opt Phys, 2002, 35: 4383–4400

    Article  CAS  Google Scholar 

  11. Ma G, Suto M, Lee L C. Fluorescence from excitation of CH4, CH3OH and CH3SH by extreme vacuum ultraviolet radiation. J Quant Spectrosc Radiat Transfer, 1990, 44: 379–391

    Article  CAS  Google Scholar 

  12. Worner H J, Qian X, Merkt F. Jahn-Teller effect in tetrahedral symmetry: Large-amplitude tunneling motion and rovibronic structure of CH 4 and CD +4 . J Chem Phys, 2007, 126: 144305

    Google Scholar 

  13. Demher P M, Chupka W A. High resolution study of photodissociation processes in O2. J Chem Phys, 1975, 62(11): 4525–4534

    Article  Google Scholar 

  14. Rabalais J W, Bergmark T, Werme L O, et al. The Jahn-Teller effect in the electron spectrum of methane. Phys Scr, 1971, 3: 13–18

    Article  CAS  Google Scholar 

  15. Ehresmann A, Liebel H, Schmoranzer H, et al. VUV-fluorescence spectroscopy of O2 photodissociation into neutral excited fragments between 17 and 19 eV. J Phys B: At Mol Opt Phys, 2004, 37: 389–401

    Article  CAS  Google Scholar 

  16. Takeshita K. A theoretical analysis of Jahn-Teller effect in the photo-electron spetrum of methane. J Chem Phys, 1987, 86: 329–338

    Article  CAS  Google Scholar 

  17. Pullen B P, Carlson T A, Moddeman W E, et al. Photoelectron spectra of methane, silane, Germane, methyl fluoride, difluoromethane, and trifluoromethane. J Chem Phys, 1970, 53: 768–782

    Article  CAS  Google Scholar 

  18. Brundle C R, Robin M B, Basch H. Electronic energies and electronic structures of the fluoromethanes. J Chem Phys, 1970, 53: 2196–2213

    Article  CAS  Google Scholar 

  19. Robin M B Higher Excited States of Polyatomic Molecules. New York and London: Academic Press, INC, 1974. 1, 108–120

    Google Scholar 

  20. Kassner Ch, Stuhl F, Luo M, et al. On the vacuum ultraviolet radical photolysis CH2(1 3B1) − hv-CH(A2†) − H(1 2S): A combined experimental and theoretical investigation. J Chem Phys, 1996, 105: 4605–4612

    Article  CAS  Google Scholar 

  21. Bearda R A, Hemert M C, Dishoeck E F. Photodissociation of CH2. I. Potential energy surfaces of the dissociation into CH and H. J Chem Phys, 1992, 97: 8240–8249

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FanAo Kong.

Additional information

Supported by the National Basic Research Program of China (Grant No. 2006CB806000)

About this article

Cite this article

Song, D., Liu, K., Kong, F. et al. Neutral dissociation of methane in the ultra-fast laser pulse. Chin. Sci. Bull. 53, 1946–1950 (2008). https://doi.org/10.1007/s11434-008-0232-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0232-6

Keywords

Navigation