Adaptation to salinity in mangroves: Implication on the evolution of salt-tolerance

Abstract

A plant’s adaptation to its environment is one of the most important issues in evolutionary biology. Mangroves are trees that inhabit the intertidal zones with high salinity, while salt tolerance competence of different species varies. Even congeneric species usually occupy distinct positions of intertidal zones due to differential ability of salt tolerance. Some species have different ecotypes that adapt well to littoral and terrestrial environments, respectively. These characteristics of mangroves make them ideal ecological models to study adaptation of mangroves to salinity. Here, we briefly depict adaptive traits of salt tolerance in mangroves with respect to anatomy, physiology and biochemistry, and review the major advances recently made on both the genetic and genomic levels. Results from studies on individual genes or whole genomes of mangroves have confirmed conclusions drawn from studies on anatomy, physiology and biochemistry, and have further indicated that specific patterns of gene expression might contribute to adaptive evolution of mangroves under high salinity. By integrating all information from mangroves and performing comparisons among species of mangroves and non-mangroves, we could give a general picture of adaptation of mangroves to salinity, thus providing a new avenue for further studies on a molecular basis of adaptive evolution of mangroves.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Tomlinson P B. The Botany of Mangrove. New York: Press Syndicate of the University of Cambridge, 1986

    Google Scholar 

  2. 2

    Lin P. A Review on the Mangrove Research in China. J Xiamen Univ (Natural Sci) (in Chinese), 2001, 40(2): 592–603

    Google Scholar 

  3. 3

    Wang B S, Liang S C, Zhang W Y, et al. Mangrove Flora of the World. Acta Bot Sin, 2003, 45(6): 644–653

    Google Scholar 

  4. 4

    Mimura T, Kura-Hotta M, Tsujimura T, et al. Rapid increase of vacuolar volume in response to salt stress. Planta, 2003, 216: 397–402

    PubMed  CAS  Google Scholar 

  5. 5

    Kura-Hotta M, Mimura M, Tsujimura T, et al. High salt treatment-induced Na+ extrusion and low salt treatment-induced Na+ accumulation in suspension-cultured cells of the mangrove plant, Bruguiera sexangula. Plant Cell Environ, 2001, 24: 1105–1112

    Article  CAS  Google Scholar 

  6. 6

    Zhao K F, Feng L T, Lu Y F, et al. The osmotica and their contributions to the osmotic adjustment for Kandelia Candel (L.) Druce and Avicennia matina (Forsk) Vierh growing in the Jiulongjiang river estuary. Oceanol Limnol Sin (in Chinese), 1999, 30(1): 57–61

    Google Scholar 

  7. 7

    Sobrado M A. Leaf characteristics and gas exchange of the mangrove Laguncularia racemosa as affected by salinity. Photosynthetica, 2005, 43(2): 217–221

    Article  Google Scholar 

  8. 8

    Ye Y, Tam N F Y, Lu C Y, et al. Effects of salinity on germination, seedling growth and physiology of three salt-secreting mangrove species. Aquat Bot, 2005, 83: 193–205

    Article  CAS  Google Scholar 

  9. 9

    Zheng W J, Wang W Q, Lin P. Dynamics of element contents during the development of hypocotyls and leaves of certain mangrove species. J Exp Mar Biol Ecol, 1999, 233: 248–257

    Article  Google Scholar 

  10. 10

    Wang W Q, Ke L, Tam N F Y, et al. Change in the main osmotica during the development of Kandelis candel hypocotyls and after mature hypocotyls were transplanted in solutions with different salinities. Mar Biol, 2002, 141: 1029–1034

    Article  CAS  Google Scholar 

  11. 11

    Zhao H, Zheng W J, Sun J, et al. Dynamics of element levels and adaptation to saline environment during the development in Aegiceras corniculatum mangrove. Mar Sci (in Chinese), 2004, 28(9): 1–5

    Google Scholar 

  12. 12

    Takemura T, Hanagata N, Sugihara K, et al. Physiological and biochemical response to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquat Bot, 2000, 68: 15–28

    Article  CAS  Google Scholar 

  13. 13

    Aziz I, Khan M A. Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta, Pakistan. Aquat Bot, 2001, (70): 259–268

  14. 14

    Khan M A, Aziz I. Salinity tolerance in some mangrove species from Pakistan. Wetl Ecol Manag, 2001, 9: 219–223

    Google Scholar 

  15. 15

    Suarez N, Medina E. Influence of salinity on Na+ and K+ accumulation, and gas exchange in Avicennia germinans. Photosynthetica, 2006, 44(2): 268–274

    Article  CAS  Google Scholar 

  16. 16

    Zhu J K. Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol, 2003, 6: 441–445

    PubMed  Article  CAS  Google Scholar 

  17. 17

    Ru Q M, Zheng H L, Xiao Q. Advances in salt tolerance mechanism of mangrove. Acta Bot Yunnanica (in Chinese). 2006, 28(1): 78–84

    CAS  Google Scholar 

  18. 18

    Hibino T, Meng Y L, Kawamistu Y, et al. Molecular cloning and functional characterization of two kinds of betaine-2-aldehyde dehydrogenase in betain accumulating mangrove, Avicennia marina (Forsk) Vierh. Plant Mol Biol, 2001, 45(3): 353–363

    PubMed  Article  CAS  Google Scholar 

  19. 19

    Parida A K, Das A B, Das P. NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. Plant Biol, 2002, 45: 28–36

    CAS  Article  Google Scholar 

  20. 20

    Fu X H, Huang Y L, Deng S L, et al. Construction of a SSH library of Aegiceras corniculatum under salt stress and expression analysis of four transcripts. Plant Sci, 2005, 169: 147–154

    Article  CAS  Google Scholar 

  21. 21

    Datta P N, Ghose M. Estimation of osmotic potential and free amino acids in some mangroves of the Sundarbans, India. Acta Bot Croast, 2003, 62(1): 37–45

    CAS  Google Scholar 

  22. 22

    Popp M, Larher F, Weigel P. Osmotic adaptation in Australian mangroces. Vegetatio, 1985, 61: 247–253

    Article  Google Scholar 

  23. 23

    Parida A K, Das A B, Sanada Y, et al. Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum. Aqua Bot, 2004, 80: 77–87

    Article  CAS  Google Scholar 

  24. 24

    Yasumoto E, Adachi K, Kato M, et al. Uptake of inorganic ions and compatibles solutes in culture mangrove cells during salt stress. In Vitro Cell Dev Biol-Plant, 1999, 35: 82–85

    Article  CAS  Google Scholar 

  25. 25

    Sun W Q, Li X P, Ong B L. Preferential accumulation of D-pinitol in Acrostichum aureum gametophytes in response to salt stress. Physiol Plantarum, 1999, 105: 51–57

    Article  CAS  Google Scholar 

  26. 26

    Jithesh M N, Prashanth S R, Sicaprakash K R, et al. Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stress in the high salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. Plant Cell Rep, 2006, 25: 865–876

    PubMed  Article  CAS  Google Scholar 

  27. 27

    Zhang Y H, Wang W Q, Lin P. Growth and leaves membrane lipid peroxidation of Bruguiera gymnorrhiza (L.) Lamk. Seedlings under long and short-term salinity. Acta Hydrobiol Sin, 2004, 28(2): 186–190

    CAS  Google Scholar 

  28. 28

    Parida A K, Das A, Mohanty P. Investigations on the antioxidative defence responses to NaCl stress in a mangrove, Bruguiera parviflora: Differential regulations of isoforms of some antioxidative enzymes. Plant Growth Regul, 2004, 42: 213–226.

    Article  CAS  Google Scholar 

  29. 29

    Parida A K, Das A B, Sanada Y, et al. Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum. Aquat Bot, 2004, 80: 77–87

    Article  CAS  Google Scholar 

  30. 30

    Mishra S, Das A B. Effect of NaCl on leaf salt secretion and antioxidative enzyme level in roots of a mangrove, Aegiceras corniculatum. Indian J Exp Biol, 2003, (41): 160–166

  31. 31

    Waditee R, Hibino T, Tanaka Y, et al.. Functional characterization of Betaine/proline transporters in betaine accumulating mangrove. J Biol Chem, 2002, 277: 18373–18382

    PubMed  Article  CAS  Google Scholar 

  32. 32

    Zhou H T, Lin P. Extractoin of salt-tolerant cDNA in mangrove Avicennia marina by mRNA differential display. Chin J Biotech(in Chinese), 2002, 18(1): 51–54

    CAS  Google Scholar 

  33. 33

    Mehta P A, Sivaprakash K, Parani M, et al. Generation and analysis of expressed sequence tags from the salt-tolerant mangrove species Avicennia marina (Forsh) Vierh. Theor Appl Genet, 2005, 110: 416–424

    PubMed  Article  CAS  Google Scholar 

  34. 34

    Maurel C, Chrispeels M J. Aquaporins, a molecular entry into plant water relations. Plant Physiol, 2001, 125: 135–138

    PubMed  Article  CAS  Google Scholar 

  35. 35

    Fu X H. Cloning and functional expression of salt tolerance related genes in Aegiceras corniculatum and their adaptive evolution analysis (in Chinese). Ph. D Thesis. Guangzhou: Sun Yat-sen University, 2006

    Google Scholar 

  36. 36

    Sugihara K, Hanagata N, Dubinsky Z, et al. Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza. Plant Cell Physiol, 2000; (41): 1279–1285

  37. 37

    Miyama M, Shimizu H, Sugiyama M, Hanagata N. Sequencing and analysis of 14, 842 expressed sequence tags of burma mangrove, Bruguiera gymnorrhiza. Plant Sci, 2006, 171: 234–241

    Article  Google Scholar 

  38. 38

    Miyama M, Hanagata N. Microarray analysis of 7029 gene expression patterns in burma mangrove under high-salinity stress. Plant Sci, 2007, 172(5): 948–957

    Article  Google Scholar 

  39. 39

    Banzai T, Hershkovits G, Katocoff D J, Hanagata N, et al. Identification and characterization of mRNA transcripts differentially expressed in response to high salinity by means of differential display in the mangrove, Bruguiera gymnorrhiza. Plant Sci, 2002, 162: 499–505

    Article  CAS  Google Scholar 

  40. 40

    Banzai T, Sumiya K, Hanagata N, et al. Molecular cloning and characterization of genes encoding BURP domain-containing protein in the mangrove, Bruguiera gymnorrhiza. Trees. 2002, 16: 87–93

    Article  CAS  Google Scholar 

  41. 41

    Banzai T, Hanagata N, Dubinsky Z, et al. Fructose-2, 6-bisphosphate contents were increased in response to salt, water and osmotic stress in leaves of Bruguiera gymnorrhiza by differential changes in the activity of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphate 2-phosphatase. Plant Mol Biol, 2003, 53: 51–59

    PubMed  Article  CAS  Google Scholar 

  42. 42

    Takemura T, Hanagata N, Dubinsky Z, et al. Molecular characterization and response to salt stress of mRNAs encoding cytosolic Cu/Zn superoxide dismutase and catalase from Bruguiera gymnorrhiza. Trees, 2002, 16: 94–99

    Article  CAS  Google Scholar 

  43. 43

    Yamada A, Saitoh T, Mimura T, et al. Expression of mangrove allene oxide cyclase enhances salt tolerance in Escherichia coli, yeast, and tobacco cells. Plant Cell Physiol. 2002, 43: 903–910

    PubMed  Article  CAS  Google Scholar 

  44. 44

    Liang S. Transcript profile of Ceriops tagal in response to salinity and its implication for adaptiv evolution (in Chinese). Ph. D Thesis. Guangzhou: Sun Yat-sen University, 2007

    Google Scholar 

  45. 45

    Yang G L. Comparative genomics in salt tolerance between two ecotypes of Hibiscus tiliaceus using cDNA microarray. PhD Thesis. Guangzhou: Sun Yat-sen University, 2007

    Google Scholar 

  46. 46

    Nguyen P D, Ho C L, Harikrishna J A, et al. Gerneration and analysis of expressed sequence tags from the mangrove plant, Acanthus ebracteatus Vahl. Tree Genetics Genome. 2006, 2: 196–201

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to SuHua Shi.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 30730008, 30470119, and 30500049)

About this article

Cite this article

Liang, S., Zhou, R., Dong, S. et al. Adaptation to salinity in mangroves: Implication on the evolution of salt-tolerance. Chin. Sci. Bull. 53, 1708 (2008). https://doi.org/10.1007/s11434-008-0221-9

Download citation

Keywords

  • mangroves
  • salt stress
  • adaptive evolution
  • gene
  • genome