Skip to main content
Log in

Characterstics of seasonal variations of leaf n-alkanes and n-alkenes in modern higher plants in Qingjiang, Hubei Province, China

  • Published:
Chinese Science Bulletin

Abstract

On the basis of GC and GC-MS analyses, the seasonal variation of leaf lipids is observed in five plant species in Qingjiang in Hubei Province. The CPI values (carbon preference index) of n-alkanes decrease gradually from May to November, though the carbon number distributions and the predominant carbon number in an individual species keep unchanged. The declined CPI values might be caused by the leaf fading, which is further supported by a comparison of the defoliated leaves with the fresh leaves. This observation infers the CPI values of n-alkanes in Quaternary sediments can be used as a tool to index the humification, and thus the climatic and the environmental conditions. The plants analyzed here show a remarkable difference in n-alkanes abundance, suggesting their differential contribution to the n-alkanes identified in sediments. The abundance and the compound species of the n-alkenes detected in the plant leaves change greatly with the seasons due to the influence of temperature, with the least compounds being identified in August.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conte M H, Weber J C. Plant biomarker in aerosols record isotopic discrimination of terrestrial photosynthesis. Nature, 2002, 417: 639–641

    Article  PubMed  CAS  Google Scholar 

  2. Shepherd T, Robertson G W, Griffiths D W, et al. Effects of environment on the composition of epicuticular wax esters from kale and swede. Phytochemistry, 1997, 46: 83–96

    Article  CAS  Google Scholar 

  3. Riederer M, Schreiber L. Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot, 2001, 52(363): 2023–2032

    Article  PubMed  CAS  Google Scholar 

  4. Jetter R, Schäffer S. Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Physiol, 2001, 126: 1725–1737

    Article  PubMed  CAS  Google Scholar 

  5. Bakker M I, Bass W J, Sijm D T H M, et al. Leaf wax of lactuca sativa and plantago major. Phytochemistry, 1998, 47(8): 1489–1493

    Article  CAS  Google Scholar 

  6. Pancost R D, Boot C S. The palaeoclimatic utility of terrestrial biomarkers in marine sediments. Mar Chem, 2004, 92: 239–261

    Article  CAS  Google Scholar 

  7. Lu B, Zhou H Y, Chen R H, et al. The composition characteristic of n-alkanes in the modern sediments of the Arctic and the comparison with that of sea areas of different latitudes. Chin J Polar Res (in Chinese), 2004, 16(4): 281–294

    CAS  Google Scholar 

  8. Eglinton T I, Boon J J, Minor E C, et al. Microscale characterization of algal and related particulate organic matter by direct temperature-resolved mass spectrometry. Mar Chem, 1996, 52: 27–54

    Article  Google Scholar 

  9. Cranwell P A. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Freshwat Biol, 1973, 3: 259–265

    Article  Google Scholar 

  10. Xie S, Nott C J, Avsejs L A, et al. Palaeoclimate records in compound-specific δD values of a lipid biomarker in ombrotrophic peat. Org Geochem, 2000, 31: 1053–1057

    Article  CAS  Google Scholar 

  11. Pancost R D, Baas M, Geel B. Biomarkers as proxies for plant inputs to peats: an example from a sub-boreal ombrotrophic bog. Org Geochem, 2002, 33: 675–690

    Article  CAS  Google Scholar 

  12. Xie S C, Yi Y, Huang J H, et al. Lipid distribution in a subtropical southern China stalagmite as a record of soil ecosystem response to paleoclimate change. Quat Res, 2003, 60: 340–347

    Article  CAS  Google Scholar 

  13. Zhang Z H, Zhao M X, Eglinton G, et al. Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr. Quat Sci Rev, 2006, 25: 575–594

    Article  Google Scholar 

  14. Xie S C, Yi Y, Liu Y Y, et al. The Pleistocene vermicular red earth in South China signaling the global climatic change: the molecular fossil record. Sci Chin Ser D-Earch Sci, 2003, 46(11): 1113–1120

    Article  CAS  Google Scholar 

  15. Jeng W L. Higher plant n-alkanes average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments. Mar Chem, 2006, 102: 242–251

    Article  CAS  Google Scholar 

  16. Zheng Y H, Cheng P, Zhou W J. Paleo-vegetation and paleo-cliamte n-alkanes and conpound-specific carbon isotopic compositions. Mar geol Quat Geol (in Chinese), 2005, 25(1): 99–104

    CAS  Google Scholar 

  17. Pu Y, Huang J H, Huang X Y, et al. Acyclic alkanes in the soil over Heshang cave in Qingjiang, Hubei Province. J Chin U Geosci, 2006, 17: 115–120

    Article  CAS  Google Scholar 

  18. Inno S. Effect of leaf age on epicuticular wax alkanes in Rhododendron. Phytochemistry, 1983, 22(2): 461–463

    Article  Google Scholar 

  19. Chikaraishi Y, Naraoka H, Poulson S R. Carbon and hydrogen isotopic fractionation during lipid biosynthesis in a higher plant (Cryptomeria japonica). Phytochemistry, 2004, 65: 323–330

    Article  PubMed  CAS  Google Scholar 

  20. Lide D R. CRC-Handbook of Chemistry and Physics. London: CRC-Press, 2004

    Google Scholar 

  21. Kawamura K, Ishimura Y, Yamazaki K. Four years, observation of terrestrial lipid class compounds on marine aerosols from the western North Pacific. Glob Biogeochem Cycles, 2003, 17: 1–19

    Article  Google Scholar 

  22. Conte M H, Weber J C, Carlson P J, et al. Molecular and carbon isotopic composition of leaf wax in vegetation and aerosols in a northern prairie ecosystem. Oecologia, 2003, 135: 67–77

    PubMed  Google Scholar 

  23. Schefuß E, Ratmeyer V, Stuut J W, et al. Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic. Geochim Cosmochim Acta, 2003, 67(10): 1757–1767

    Article  Google Scholar 

  24. Rommerskirchen F, Plader A, Eglinton G, et al. Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C4 grass waxes. Org Geochem, 2006, 37: 1303–1332

    Article  CAS  Google Scholar 

  25. Mohammadian M A, Watling J R, Hill R S. The impact of epicuticular wax on gas-exchange and photoinhibition in Leucadendron lanigerum (Proteaceae). Acta Oecolog, 2007, 31: 93–101

    Article  Google Scholar 

  26. Xie S C, Huang J H, Wang H M, et al. Distributions of fatty acids in a stalagmite related to paleoclimate change at Qingjiang in Hubei, Southern China. Sci Chin Ser D-Earth Sci, 2005, 48(9): 1463–1469

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JunHua Huang.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 40572098, 40525008, 40621002 and 40531004) and the 111 Project (Grant No. B08030)

About this article

Cite this article

Cui, J., Huang, J. & Xie, S. Characterstics of seasonal variations of leaf n-alkanes and n-alkenes in modern higher plants in Qingjiang, Hubei Province, China. Chin. Sci. Bull. 53, 2659–2664 (2008). https://doi.org/10.1007/s11434-008-0194-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0194-8

Keywords

Navigation