Skip to main content
Log in

Expression profile analysis of the oxygen response in the nitrogen-fixing Pseudomonas stutzeri A1501 by genome-wide DNA microarray

  • Articles
  • Microbiology
  • Published:
Chinese Science Bulletin

Abstract

Pseudomonas stutzeri A1501, an associative nitrogen-fixing bacterium, was isolated from the rice paddy rhizosphere. This bacterium fixes nitrogen under microaerobic conditions. In this study, genome-wide DNA microarrays were used to analyze the global transcription profile of A1501 under aerobic and microaerobic conditions. The expression of 135 genes was significantly altered by more than 2-fold in response to oxygen stress. Among these genes, 68 were down-regulated under aerobic conditions; these genes included those responsible for nitrogen fixation and denitrification. Sixty-seven genes were up-regulated under aerobic conditions; these genes included sodC, encoding a copper-zinc superoxide dismutase, PST2179, encoding an NAD(P)-dependent oxidoreductase, PST3584, encoding a 2OG-Fe(II) oxygenase, and PST3602, encoding an NAD(P)H-flavin oxidoreductase. Additionally, seven genes involved in capsular polysaccharide and antigen oligosaccharide biosynthesis together with 17 genes encoding proteins of unknown function were up-regulated under aerobic conditions. The overall analysis suggests that the genes we identified are involved in the protection of the bacterium from oxygen, but the mechanisms of their action remain to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krieg N R, Hoffman P S. Microaerophily and oxygen toxicity. Arnu Rev Microbiol, 1986, 40: 107–130

    Article  CAS  Google Scholar 

  2. Farr S B, Kogoma T. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev, 1991, 55: 561–585

    PubMed  CAS  Google Scholar 

  3. Imlay J A. How oxygen damages microbes: Oxygen tolerance and obligate anaerobiosis. Adv Microb Physiol, 2002, 46: 111–153

    Article  PubMed  CAS  Google Scholar 

  4. Gonzalez-Flecha B, Demple B. Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. J Biol Chem, 1995, 270: 13681–13687

    Article  PubMed  CAS  Google Scholar 

  5. Messner K R, Imlay J A. The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. J Biol Chem, 1999, 274: 10119–10128

    Article  PubMed  CAS  Google Scholar 

  6. Sabra W, Zeng A P, Lünsdorf H, et al. Effect of oxygen on formation and structure of Azotobacter vinelandii alginate and its role in protectin g nitrogenase. Appl Env Micro, 2000, 66: 4037–4044

    Article  CAS  Google Scholar 

  7. Yulia V B, Alexander V B, Vladimir P S. Noncoupled NADH: ubiquinone oxidoredutase of Azotobacter vinelandii is required for diazotrophic growth at high oxygen concentrations. J Bacteriol, 2001, 183(23): 6869–6874

    Article  CAS  Google Scholar 

  8. Post E, Kleiner D, Oelze J. Whole cell respiration and nitrogenase activities in Azotobacter vinelandii growing in oxygen controlled continuous culture. Arch Microbiol, 1983, 134: 68–72

    Article  PubMed  CAS  Google Scholar 

  9. Chen L, Keramati L, Helmann J D. Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions. Proc Natl Acad Sci USA, 1995, 92: 8190–8194

    Article  PubMed  CAS  Google Scholar 

  10. Lin M, Smalla K, Heuer H, et al. Effect of an Alcaligenes faecalis inoculant strain on bacterial communities in flooded microcosms planted with rice seedlings. Appl Soil Ecol, 2000, 15: 211–225

    Article  Google Scholar 

  11. You C B, Song H X, Wang J P, et al. Association of Alcaligenes faecalis with wetland rice. Plant Soil, 1991, 137: 81–85

    Article  Google Scholar 

  12. Desnoues N, Lin M, Guo X W, et al. Nitrogen fixation genetics and regulation in a Pseudomonas stutzeri strain associated with rice. Microbiology, 2003, 149: 2251–2262

    Article  PubMed  CAS  Google Scholar 

  13. Fay P. Oxygen relations of nitrogen fixation in Cyanobacteria. Microbiol Rev, 1992, 56: 340–373

    PubMed  CAS  Google Scholar 

  14. van Niel E W J, Gottschal J C, Oxygen consumption by Desulfovibrio strains with and without polyglucose, Appl Environ Microbiol, 1998, 64: 1034–1039

    PubMed  Google Scholar 

  15. Yan Y L, Yang J, Chen L H, et al. Structural and functional analysis of denitrification genes in Pseudomonas stutzeri A1501. Sci China Ser C-Life Sci, 2005, 48: 585–592

    Article  CAS  Google Scholar 

  16. Patrick W, Walter G Z. Functional domains of NosR, a novel transmembrane iron-sulfur flavoprotein necessary for nitrous oxide respiration. J Bacteriol, 2005, 187: 1992–2001

    Article  CAS  Google Scholar 

  17. Schreiber K, Krieger R, Benkert B, et al. The anaerobic regulatory network required for Pseudomonas aeruginosa nitrate respiration. J Bacteriol, 2007, 189: 4310–4314

    Article  PubMed  CAS  Google Scholar 

  18. Vollack K U, Zumft W G. Nitric oxide signaling and transcriptional control of denitrification genes in Pseudomonas stutzeri. J Bacteriol, 2001, 183: 2516–2526

    Article  PubMed  CAS  Google Scholar 

  19. Körner H, Zumft W G. Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl Environ Microbiol, 1989, 55: 1670–1676

    PubMed  Google Scholar 

  20. Moshiri F, Smith E G, Taormino J P, et al. Transcriptional regulation of cytochrome d in nitrogen-fixing Azotobacter vinelandii. Evidence that up-regulation during N2 fixation is independent of nifA but dependent on ntrA. J Biol Chem, 1991, 266: 23169–23174

    PubMed  CAS  Google Scholar 

  21. Dixon R, Kahn D. Genetic regulation of biological nitrogen fixation. Nat Rev, 2004, 2: 621–631

    Article  CAS  Google Scholar 

  22. Kawasaki S, Watamura Y, Ono M, et al. Adaptative response to oxygen stress in obligatory anaerobes Clostridium acetobutylicum and Clostridium aminovalericum. Appl Env Microbiol, 2005, 71: 8442–8450

    Article  CAS  Google Scholar 

  23. Martinez-Argudo I, Little R, Shearer N, et al. Nitrogen fixation: key genetic regulatory mechanisms. Biochem Soc Transact, 2005, 33: 152–115

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Lin.

Additional information

Supported by the National Basic Research Program of China (Grant Nos. 2001CB108904 and 2007CB707805) and High-Technology Research Development Program of China (Grant Nos. 2006AA020202 and 2006AA0Z229))

About this article

Cite this article

Dou, Y., Yan, Y., Ping, S. et al. Expression profile analysis of the oxygen response in the nitrogen-fixing Pseudomonas stutzeri A1501 by genome-wide DNA microarray. Chin. Sci. Bull. 53, 1197–1204 (2008). https://doi.org/10.1007/s11434-008-0180-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0180-1

Key words

Navigation