Skip to main content
Log in

Construction of AFLP-based genetic linkage maps for the Chinese shrimp Fenneropaeneus chinensis

  • Articles
  • Marine Biology
  • Published:
Chinese Science Bulletin

Abstract

Fenneropaeneus chinensis is an important species in marine fishery resources and aquaculture in China. A genetic linkage map is essential for improving the efficiency of its breeding by marker-assisted selection and identifying commercially important genes. Linkage maps of F. chinensis were constructed with an F2 mapping population (110 progenies) using amplified fragment length polymorphic (AFLP) marker in this study. Fifty-five AFLP primer combinations produced 532 AFLP markers fitting for map strategy in mapping family. The markers with 3:1 segregating ratios were analyzed using F2 intercross model for the common linkage map, while the markers with 1:1 ratio were analyzed using the pseudo-testcross strategy. The maps of male, female and common were constructed. The female map included 103 markers that formed 28 linkage groups, covering a total length of 1090 cM. All markers were linked with the linkage groups. Segregation distortion was observed for 6 of 103 markers in the female map. The average distance between markers was 14.53 cM and ranged from 4.4 to 24.8 cM. The male map included 144 markers that formed 35 linkage groups. Ten markers remained unlinked in male map. Segregation distortion was observed for 7 of 144 markers in the male map. The total distance of male map covered 1617 cM. The average distance between markers was 16.36 cM. The male map was 32.6% longer than the female map, which may reflect sex-specific recombination rates in Chinese shrimp. The common map was composed of 216 markers, including in 44 linkage groups covering a total distance of 1772.1 cM. Two markers remained unlinked. No distorted markers of 216 markers were shown in the common map. The distance between markers was 10.42 cM. An average estimated genome size for the Chinese shrimp was 2420 cM, which was consistent with the relative size of the Penaeid genome. The distribution of AFLP markers was relatively even in chromosomes of Chinese shrimp maps. The linkage analysis presented in this work provided some insight into the level of polymorphism and genetic variation of Chinese shrimp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FAO. World review of fisheries and aquaculture: Pare 1. In: Group FAO Information Division, eds. The State of World Fisheries and Aquaculture (SOFIA 2002). Rome: FAO Fisheries Department, 2002

    Google Scholar 

  2. Goyard E, Patrois J, Peignon J M, et al. Selection for better growth of Penaeus stylirostris in Tahiti and New Caledonia. Aquaculture, 2002, 204: 461–468

    Article  Google Scholar 

  3. Hetzel D J S, Crocos P J, Davis G P, et al. Response to selection and heritability for growth in the Kuruma prawn, Penaeus japonicus. Aquaculture, 2000, 181: 215–223

    Article  Google Scholar 

  4. Coman G J, Crocos P J, Preston N P, et al. The effect of temperature on the growth, survival and biomass of different families of juvenile Penaeus japonicus Bate. Aquaculture, 2002, 214: 185–199

    Article  Google Scholar 

  5. Preston N P, Crocos P J, Keys S J, et al. Comparative growth of selected and non-selected Kuruma shrimp Penaeus (Marsupenaeus) japonicus in commercial farm ponds; implications for broodstock production. Aquaculture, 2004, 231: 73–82

    Article  Google Scholar 

  6. Benzie J A H, Kenway M, Trott L. Estimates for the heritability of size in juvenile Penaeus monodon prawns from half-sib matings. Aquaculture, 1997, 152: 49–53

    Article  Google Scholar 

  7. Argue B J, Arce S M, Lotz J M, et al. Selective breeding of Pacific white shrimp (Litopenaeus vannamei) for growth and resistance to Taura Syndrome Virus. Aquaculture, 2002, 204: 447–460

    Article  Google Scholar 

  8. Perez-Rostro C I, Ibarra A M. Quantitative genetic parameter estimates for size and growth rate traits in Pacific white shrimp, Penaeus vannamei (Boone 1931) when reared indoors. Aquac Res, 2003a, 34: 543–553

    Article  Google Scholar 

  9. Perez-Rostro C I, Ibarra A M. Heritabilities and genetic correlations of size traits at harvest size in sexually dimorphic Pacific white shrimp (Litopenaeus vannamei) grown in two environments. Aquac Res, 2003b, 34: 1079–1085

    Article  Google Scholar 

  10. Arcos F G, Racotta I S, Ibarra A M. Genetic parameter estimates for reproductive traits and egg composition in Pacific white shrimp Penaeus (Litopenaeus) vannamei. Aquaculture, 2004, 236: 151–165

    Article  CAS  Google Scholar 

  11. Gitterle T, Rye M, Salte R. et al. Genetic (co) variation in harvest weight and survival in Penaeus (Litopenaeus) vannamei under standard commercial conditions. Aquaculture, 2005, 243: 83–92

    Article  Google Scholar 

  12. Rance K A, Mayes S, Price Z, et al. Quantitative trait loci for yield components in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet, 2001, 103: 1302–1310

    Article  CAS  Google Scholar 

  13. Kelly J D, Gepts P, Miklas P N, et al. Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic important in bean and cowpea. Field Crops Res, 2003, 82: 135–154

    Article  Google Scholar 

  14. Moen T, Fjalestad K T, Munck H, et al. A multistage testing strategy for detection of quantitative trait loci affecting disease resistance in Atlantic salmon. Genetics, 2004, 167: 851–858

    Article  PubMed  CAS  Google Scholar 

  15. Somorjai M L, Danzmann R G, Ferguson M M. Distribution of temperature tolerance quantitative trait loci in Arctic Charr (Salvelinus alpinus) and inferred homologies in rainbow trout (Oncorhynchus mykiss). Genetics, 2003, 165: 1443–1456

    PubMed  CAS  Google Scholar 

  16. Jones E S, Hughes L J, Drayton M C, et al. An SSR and AFLP molecular marker-based genetic map of white clover (Trifolium repens L.). Plant Sci, 2003, 165: 531–539

    Article  CAS  Google Scholar 

  17. Hua J, Xing Y, Wu W, et al. Single-locus heterotic effect and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 2003, 100: 2574–2579

    Article  PubMed  CAS  Google Scholar 

  18. Naruse K, Fukamachi S, Mitani H, et al. A detailed linkage map of Medaka, Oryzias latipes: Compatative genomics and genome evolution. Genetics, 2000, 154: 1779–1784

    Google Scholar 

  19. Rieseberg L H, Baird S J E, Gardner K A. Hybridization, introgression and linkage evolution. Plant Mol Biol, 2000, 42: 205–224

    Article  PubMed  CAS  Google Scholar 

  20. Whitkus R. Genetic of adaptive radiation in Hawaii and Cook Island species of Tetramolopium (Asteraceae). II. Genetic linkage map and its implications for interspecific breeding barriers. Genetics, 1998, 150: 1209–1216

    PubMed  CAS  Google Scholar 

  21. Fishman L, Kelly A J, Morgan E, et al. A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics, 2001, 159: 1701–1716

    PubMed  CAS  Google Scholar 

  22. Faris J D, Laddomada B, Gill B S. Molecular mapping of segregation distortion loci in Aegilops tauschii. Genetics, 1998, 149: 319–327

    PubMed  CAS  Google Scholar 

  23. Sakamoto T, Danzmann R G, Gharbi K, et al. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics, 2000, 155: 1331–1345

    PubMed  CAS  Google Scholar 

  24. Nichols K M, Young W P, Danzmann R G, et al. A consolidated linkage map for rainbow trout (Oncorhynchus mykiss). Anim Genet, 2003, 34: 102–115

    Article  PubMed  CAS  Google Scholar 

  25. Kocher T D, Lee W J, Sobolewska H, et al. A genetic linkage map of a cichlid fish, the tilapia (Oreochromis miloticus). Genetics, 1998, 148: 1225–1232

    PubMed  CAS  Google Scholar 

  26. Waldbieser G C, Bosworth B G, Nonneman D J, et al. A microsatellite-based genetic linkage map for channel catfish, Ictalurus punctatus. Genetics, 2001, 158: 727–734

    PubMed  CAS  Google Scholar 

  27. Liu Z, Karsi A, Li P, et al. An AFLP-based genetic linkage map of channel catfish (Ictalurus punctatus) constructed by using an interspecific hybrid resource family. Genetics, 2003, 165: 687–694

    PubMed  CAS  Google Scholar 

  28. Ohara E, Nishimura T, Nagakura Y, et al. Genetic linkage maps of two yellowtails (Seriola quinqueradiata and Seriola lalandi). Aquaculture, 2005, 244: 41–48

    Article  CAS  Google Scholar 

  29. Coimbra M R M, Kobayashi K, Koretsugu S, et al. A genetic linkage map of the Japanese flounder, Paralichthys olivaceus. Aquaculture, 2003, 220: 203–218

    Article  CAS  Google Scholar 

  30. Li L, Xiang J, Liu X, et al. Construction of AFLP-based genetic linkage map for Zhikong scallop, Chlamys farreri Jones et Preston and mapping of sex-linked markers. Aquaculture, 2005, 245: 63–73

    Article  CAS  Google Scholar 

  31. Hubert S, and Hedgecock D. Linkage maps of microsatellite DNA markers for the Pacific oyster Crassostrea gigas. Genetics, 2004, 168: 351–362

    Article  PubMed  CAS  Google Scholar 

  32. Li Y, Byrne K, Miggiano E, et al. Genetic mapping of the kuruma prawn Penaeus japonicus using. AFLP markers. Aquaculture, 2003, 219: 143–156

    Article  CAS  Google Scholar 

  33. Wilson K, Li Y, Whan V, et al. Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length polymorphism. Aquaculture, 2002, 204: 297–309

    Article  CAS  Google Scholar 

  34. Perez F, Erazo C, Zhinaula M, et al. A sex-specific linkage map of the white shrimp Penaeus (Litopenaeus) vannamei based on AFLP markers. Aquaculture, 2004, 242: 105–118

    Article  CAS  Google Scholar 

  35. Yue Z Q, Wang W J, Kong J, et al. Construction of genetic linkage maps of Fenneropenaeus chinensis based on “double Pseudo-testcross” strategy and AFLP markers. Chin High Technol Lett (in Chinese), 2004, 5: 88–93

    Google Scholar 

  36. Wang W J, Kong J, Dong S R, et al. Genetic mapping of Chinese shrimp Fenneropaeneus chinensis using AFLP markers. Acta Zool Sin (in Chinese), 2006, 52: 575–584

    CAS  Google Scholar 

  37. Liu Z, Cordes J. DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 2004, 238: 1–37

    Article  CAS  Google Scholar 

  38. Vos P, Hogers R, Bleeker M, et al. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res, 1995, 23: 4407–4414

    Article  PubMed  CAS  Google Scholar 

  39. Dinesh K R, Chan W K, Lim T M, et al. RAPD markers in fishes—an evaluation of resolution and reproducibility. Asia-Pac J Molec Biol Biotechnol, 1995, 3: 112–118

    Google Scholar 

  40. Grattapaglia D, Sederoff R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a Pseudo-Testcross: Mapping strategy and RAPD markers. Genetics, 1994, 137: 1121–1137

    PubMed  CAS  Google Scholar 

  41. Kosambi D D. The estimation of map distances from recombination values. Ann Eugen 1944, 12: 172–175

    Google Scholar 

  42. Postlethwait J H, Johnson S L, Midson C N, A genetic linkage map for the zebrafish. Science, 1994, 264: 699–703

    Article  PubMed  CAS  Google Scholar 

  43. Chakravarti A, Lasher L K, Reefer J E. A maximum likelihood method for estimating genome length using genetic linkage data. Genetics, 1991, 128: 175–182

    PubMed  CAS  Google Scholar 

  44. Li Z X, Li J, Wang Q Y et al. AFLP-based genetic linkage map of marine shrimp Penaeus (Fenneropenaeus) chinensis. Aquaculture, 2006, 261: 463–472

    Article  CAS  Google Scholar 

  45. Sun Z N, Liu P, Li J, et al. Construction of a genetic linkage map in Fenneropenaeus chinensis using RAPD and SSR markers. Zoological Research (in Chinese), 2006, 27: 317–324

    CAS  Google Scholar 

  46. Moore S S, Whan V, Davis G P, et al. The development and application of genetic markers for the Kuruma prawn Penaeus japonicus. Aquaculture, 1999, 173: 19–32

    Article  CAS  Google Scholar 

  47. Wang S, Bao Z, Pan J, et al. AFLP linkage map of an intraspecific cross in Chlamys farreri. J Shellfish Res, 2004, 23: 491–499

    Google Scholar 

  48. Yu Z, Guo X. Genetic linkage map of the eastern oyster Crassostrea virginica Gmelin. Biol Bull, 2003, 204: 327–338

    Article  PubMed  CAS  Google Scholar 

  49. Launey S, Hedgecock D. High genetic load in the Pacific oyster Crassostrea gigas. Genetics, 2001, 159: 155–165

    Google Scholar 

  50. Young W P, Wheeler P A, Coryell V H, et al. A detailed linkage map of rainbow trout produced using doubled haploids. Genetics, 1998, 148: 1–13

    Google Scholar 

  51. Lyttle T W. Segregation distorters. Annu Rev Genet, 1991, 25: 511–557

    Article  PubMed  CAS  Google Scholar 

  52. Causse M A, Fulton T M, Cho Y G, et al. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics. 1994, 138: 1251–1274

    PubMed  CAS  Google Scholar 

  53. Vivek B S, Simon P W. Linkage relationships among molecular markers and storage root traits of carrot (Daucus carota L. ssp sativus). Theor Appl Genet, 1999, 99: 58–64

    Article  CAS  Google Scholar 

  54. Yasukochi Y. A dense genetic map of the silkworm, Bombyx mori, covering all chromosomes based on 1018 molecular markers. Genetics, 1998, 150: 1513–1525

    PubMed  CAS  Google Scholar 

  55. Cervera M T, Storme V, Ivens B, et al. Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics, 2001, 158: 787–809

    PubMed  CAS  Google Scholar 

  56. Chow S, Dougherty W J, Sandifer P A. Meiotic chromosome complements and nuclear DNA contents of four species of shrimps of the genus Penaeus. J Crustacean Biol, 1990, 10: 29–36

    Article  Google Scholar 

  57. Hulbert S H, Ilott T W, Legg E J, et al. Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms. Genetics, 1988, 120: 947–958

    PubMed  CAS  Google Scholar 

  58. Robinson W P. The extent, mechanism, and consequences of genetic variation, for recombination rate. Am J Hum Genet, 1996, 59: 1175–1183

    PubMed  CAS  Google Scholar 

  59. Lindahal K F. His and hers recombinational hotspots. Trends Genet, 1991, 7: 273–276

    Google Scholar 

  60. Singer A, Perlman H, Yan Y, et al. Sex-specific recombination rates in Zebrafish (Danio rerio). Genetics, 2002, 160, 649–657

    PubMed  CAS  Google Scholar 

  61. Gebhardt C, Ritter E, Barone A, et al. RFLP maps of potato and their alignment with the homologous tomato genome. Theor Appl Genet, 1991, 83: 49–57

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Kong.

Additional information

Supported by the National ‘948’ Project (Grant No. 2006-G55(B)) and the National High Technology Research and Development Program of China (Grant No. 2006AA10A406)

About this article

Cite this article

Tian, Y., Kong, J. & Wang, W. Construction of AFLP-based genetic linkage maps for the Chinese shrimp Fenneropaeneus chinensis . Chin. Sci. Bull. 53, 1205–1216 (2008). https://doi.org/10.1007/s11434-008-0170-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0170-3

Key words

Navigation