Skip to main content
Log in

The research progress of tiling array technology and applications

  • Review
  • Bionformatics
  • Published:
Chinese Science Bulletin

Abstract

Tiling array technology was improved from microarray technology. Over the past five years, tiling array has become an important tool for gathering genome information. Its features of high density and high throughput allow people to probe into life from the whole-genome level. This paper is a survey of tiling array technology and its applications. In addition, some typical algorithms for identifying expressed probe signals are described and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Royce T E, Rozowsky J S, Bertone P, et al. Issues in the analysis of oligonucleotide tiling microarrays for transcript mapping. Trends Genet, 2004, 21: 466–475

    Article  Google Scholar 

  2. Johnson J M, Edwards S, Shoemaker D, et al. Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. Trends Genet, 2004, 21: 93–102

    Article  Google Scholar 

  3. Whitchurch A K. Gene expression microarray. IEEE Potentials, 2002, 21: 30–34

    Article  Google Scholar 

  4. Moore T R. Making chips to probe genes. IEEE Spectrum, 2001, 38:54–60

    Article  Google Scholar 

  5. Hughes T R, Mao M, Jones A R, et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol, 2001, 19: 342–377

    Article  Google Scholar 

  6. Chou C C, Chen C H, Lee T T, et al. Optimization of probe length and the number of probes per gene for optimal microarray analysis of gene expression. Nucleic Acids Res, 2004, 32: e99

    Article  Google Scholar 

  7. Liebich J, Schadt C W, Chong S C, et al. Improvement of oligonucleotide probe design criteria for functional gene microarrays in enviromental applications. Appl Environ Microarray, 2006, 72: 1688–1691

    Article  Google Scholar 

  8. He Z L, Wu L Y, Li X Y, et al. Empirical establishment of oligonucleotide probe design criteria. Appl Environ Microarray, 2005, 71(7):3753–3760

    Article  Google Scholar 

  9. Li X Y, He Z L, Zhou J Z. Selection of optimal oligonucleotide probes for microarrays using multiple criteria, global alignment and parameter estimation. Nucleic Acids Res, 2005, 33: 6114–6123

    Article  Google Scholar 

  10. Kane M D, Jatkoe T A, Stumpf C R. et al. Assessment of sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic Acids Res, 2000, 2: 4552–4557

    Article  Google Scholar 

  11. Pearson W R, Lipman D. Improved tools for biological sequence comparison. Proc Natl Acad Sci USA, 1988, 85: 2444–2448

    Article  Google Scholar 

  12. Altschul S F, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol, 1990, 215: 403–410

    Google Scholar 

  13. Rinn J L, Euskirchen G, Bertone P, et al. The transcriptional activity of human chromosome 22. Genes Dev, 2003, 17: 529–540

    Article  Google Scholar 

  14. Mockler T C, Chan S, Sundaresan A, et al. Applications of DNA tiling arrays for whole-genome analysis. Genomics, 2005, 85: 1–15

    Article  Google Scholar 

  15. Shoemaker D D, Schadt E E, Armour C D, et al. Experimental annotation of the human genome using microarray technology. Nature, 2001, 409: 922–927

    Article  Google Scholar 

  16. Kampa D, Cheng J, Kapranove P, et al. Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosome 21 and 22. Genome Res, 2004, 12: 331–342

    Article  Google Scholar 

  17. Kapranov P, Cawley S E, Drenkow J, et al. Large_scale transcriptional activity in chromosomes 21 and 22. Science, 2002, 296:916–919

    Article  Google Scholar 

  18. Chen J J, Sun M, Kent W J, et al. Over 20% of human transcripts might form sense-antisense pairs. Necleic Acids Res, 2004, 32:4812–4820

    Article  Google Scholar 

  19. Schadt E E, Edwards S W, Debraj G, et al. A comprehensive transcript index of the human genome generated using microarrays and computational approaches. Genome Biol, 2004, 5: R73

    Article  Google Scholar 

  20. Bertone P, Stolc V, Royce T E, et al. Identification of novel transcribed sequences in human using high-resolution genomic Tiling Arrays. Science, 2004, 306: 2242–2246

    Article  Google Scholar 

  21. Cheng J, Kaparanov P, Drenkow J, et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science, 2005, 308: 1149–1154

    Article  Google Scholar 

  22. Yamada K, Lim J, Dale J, et al. Empirical analysis of transcriptional activity in the Arabidopsis genome. Science, 2003, 302: 842–846

    Article  Google Scholar 

  23. Stolc V, Gauhar Z, Mason C, et al. A gene expression map for the euchromatic genome of Drosophila melanogaster. Science, 2004, 302:655–660

    Article  Google Scholar 

  24. Ota T, Suzuki Y, Nishikawa T. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet, 2004, 36:40–45

    Article  Google Scholar 

  25. Saha S, Sparks A B, Rago C, et al. Using the transcriptome to annotate the genome. Nat Biotechnol, 2002, 20: 508–512

    Article  Google Scholar 

  26. Claverie J M. Fewer genes, more noncoding RNA. Science, 2005, 309:1529–1530

    Article  Google Scholar 

  27. Castle J, Engele P G, Armour C D, et al. Optimization of oligonucleotide arrays and RNA amplification protocols for analysis of transcript structure and alternative splicing. Genome Biol, 2003, 4:R66

    Article  Google Scholar 

  28. Flikka K, Yadetie F, Laegreid A, et al. XHM: A system for detection of potential cross hybridizations in DNA microarrays. BMC Bioinformatics, 2004, 5: 117–125

    Article  Google Scholar 

  29. Reilly C, Raghavan A, Bohjanen P. Global assessment of cross-hybridization for oligonucleotide arrays. J Biomole Tech, 2006, 17:163–172

    Google Scholar 

  30. Wu C, Carta R, Zhang L, et al. Sequence dependence of crosshybridization on short oligo microarrays. Nucleic Acids Res, 2005, 33(9): e84

    Article  Google Scholar 

  31. Halasz G, van Batenburg M F, Perusse J, et al. Detecting transcriptional active regions using genomic tiling arrays. Genome Biol, 2006, 7: R59

    Article  Google Scholar 

  32. Huber W, Toedling J, Steinmetz L M. Transcript mapping with high-density oligonucleotide tiling arrays. Bioinformatics, 22: 1963–1970

  33. Emanuelsson O, Nagalakshmi U, Zheng D Y, et al. Assessing the performance of different high-density tiling microarray strategies for mapping transcribed regions of the human genome. Genome Res, 2006, 17: 886–897

    Article  Google Scholar 

  34. Ying L, Schadt E E, Svetnik V, et al. Identification of chromosomal regions containing transcribed sequences using microarrays and computational methods. In 2003 Proceedings of the American Statistical Association Alexandria, VA: American Statistical Association, 2003: 4672–4677

  35. Rabiner L. A tutorial on hidden Markov models and selected application in speech recognition. Proc IEEE, 1989, 77: 257–286

    Article  Google Scholar 

  36. Du J, Rozowsky J S, Korbel J O, et al. A supervised hidden markov model framework for efficiently segmenting tiling array data in transcriptional and chIP-chip experiments:systematically incorporating validated biological knowledge. Bioinformatics, 2006, 22:3016–3024

    Article  Google Scholar 

  37. Munch K, Gardner P P, Arctander P, et al. A hidden Markov model approach for determing expression from genomic tiling microarrays. BMC Bioinformatics, 2006, 7: 1471–2105

    Google Scholar 

  38. Ji H K, Wong W H. TileMap: Create chromosomal map of tiling array hybridization. Bioinformatics, 2005, 21: 3629–3636

    Article  Google Scholar 

  39. Li W, Meyer C A, Liu X S. A hiddern Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences. Bioinformatics, 2005, 21: 1274–1282

    Google Scholar 

  40. Viterbi A J. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inform Theory, 1967, 13: 260–267

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XianYu Lang.

Additional information

Supported by the National Natural Science Foundation of China (Grants Nos. 60533020 and 60673064), Ministry of Science and Technology of China (Grant No. 2005DKA64002) and an 863 Program of China (Grant No. 2006AA01A116)

About this article

Cite this article

Lang, X., Wang, J. & Chi, X. The research progress of tiling array technology and applications. Chin. Sci. Bull. 53, 817–824 (2008). https://doi.org/10.1007/s11434-008-0155-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0155-2

Keywords

Navigation