Skip to main content
Log in

Geochronology and geochemistry of the Fangcheng Neoproterozoic alkali-syenites in East Qinling orogen and its geodynamic implications

  • Articles
  • Geochemistry
  • Published:
Chinese Science Bulletin

Abstract

Finding of Neoproterozoic syenites at Fangcheng in the northern Qinling region of the East Qinling orogen provides an important constraint on timing of tectonic transformation to extensional regime. The alkaline pluton consists mainly of nepheline syenite, aegirine syenite, and alkali-feldspar syenite. The syenites are of intermediate (SiO2 = 54%–62%), rich in alkali (K2O+Na2O = 12%–15%), aluminum (Al2O3 = 16.81%–23.26%) and large ion lithophile elements (LILE), without any obvious Nb, Ta, Zr, and Hf anomalies. The Fangcheng syenites are geochemically characterized by relative enrichment of LREE, minor differentiation of HREE, significant negative Eu anomalies (Eu = 0.13–0.23), less negative εNd(t) values of −1.37 to −3.90, young Nd model ages of 1364 to 1569 Ma, and high zircon saturation temperatures of 915 to 1044°C. The syenitic magmas probably originated from small proportion melting of upper mantle in an extensional regime of intraplate-anorogenic tectonic setting, and have been slightly contaminated by crustal materials during ascending and/or emplacement. LA-ICP-MS zircon U-Pb dating yields ages of 844.3±1.6 Ma (MSWD = 0.86), suggesting that the Fangcheng alkaline syenites formed in the early Neoproterozoic. They are the oldest Neoproterozoic alkaline rocks ever recognized in the Qinling orogen as well as in South China. This implies that the tectonic regime of the Qinling region would have transformed from post-collisional stretch to intraplate-anorogenic extension no later than 844 Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meng Q R, Zhang G W. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 2000, 323: 183–196

    Article  Google Scholar 

  2. Zhang G W, Zhang B R, Yuan X C, et al. Qinling Orogen and Continental Dynamics (in Chinese). Beijing: Science Press, 2001. 885

    Google Scholar 

  3. Xue F, Lerch M F, Kröner A, et al. Tectonic evolution of the East Qinling Mountains, China, in the Phanerozoic: a review and new tectonic model. Tectonophysics, 1996, 253: 271–284

    Article  Google Scholar 

  4. Lu S N, Li H K, Chen Z H, et al. Meso-Neoproterozoic Geological Evolution in the Qinling Orogeny and Its Response to the Supercontinental Events of Rodinia (in Chinese). Beijing: Geological Publishing House, 2003. 1–194

    Google Scholar 

  5. Ling W, Gao S, Zhang B, et al. Neoproterozoic tectonic evolution of the northwestern Yangtze Craton, South China: implications for amalgamation and breakup of the Rodinia Supercontinent. Precambrian Res, 2003, 122, 111–140

    Article  CAS  Google Scholar 

  6. Wang T, Wang X, Zhang G, et al. Remnants of a Neoproterozoic collisional orogenic belt in the core of the Phanerozoic Qinling orogenic belt (China). Gondwana Res, 2003, 6: 699–710

    Article  CAS  Google Scholar 

  7. Chen Z, Lu S, Li H, et al. Constraining the role of the Qinling orogen in the assembly and breakup of Rodinia: Tectonic implications for Neoproterozoic granite occurrences. J Asian Earth Sci, 2006, 28: 99–115

    Article  Google Scholar 

  8. Tseng C Y, Yang H Y, Wang Y S, et al. Finding of Neoproterozoic (∼775 Ma) magmatism recorded in metamorphic complexes from the North Qilian orogen: Evidence from SHRIMP zircon U-Pb dating. Chin Sci Bull, 2006, 51: 963–970

    Article  Google Scholar 

  9. Zheng Y F, Wu Y B, Chen F K, et al. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochim Cosmochim Acta, 2004, 68: 4145–4165

    Article  CAS  Google Scholar 

  10. Lin H B, Pei X Z, Ding S P, et al. LA-ICP-MS zircon U-Pb dating of the Neoproterozoic granitic gneisses in the Yuanlong area, Tianshui City, West Qinling, China, and their geological significance. Geol Bull Chin (in Chinese with English abstract), 2006, 25: 1315–1320

    Google Scholar 

  11. Dong Y P, Zhou D W, Zhang G W. The emplacement mechanism and tectonic evolution of ultramafites in Songshugou area, eastern Qinling. Sci Geol Sin (in Chinese with English abstract), 1997, 32: 173–180

    CAS  Google Scholar 

  12. Li S G, Chen Y Z, Zhang G W, et al. A 1 Ga B. P. Alpine peridotite body emplaced into the Qinling Group: Evidence for the existence of the late Proterozoic plate tectonics in the north Qinling area. Geol Rev (in Chinese with English abstract), 1991, 37: 235–242

    Google Scholar 

  13. Liu L, Zhou D W, Wang Y, et al. Study and implication of the high-pressure felsic granulite in the Qinling complex of East Qinling. Sci China Ser D-Earth Sci, 1996, 26(S1): 60–68

    Google Scholar 

  14. Pei X Z, Li H M, Li G G. Geochemical characteristics and tectonic environment of the Shangnan granite pluton in the north Qinling. J Xi’an Coll Geol (in Chinese with English abstract), 1996, 18(3): 29–35

    CAS  Google Scholar 

  15. Pei X Z, Wang T, Ding S P, et al. Geochemical characteristics and geological significance of Neoproterozoic adakitic granitoids on the north side of the Shangdan zone in the East Qinling. Geol Chin (in Chinese with English abstract), 2003, 30: 372–381

    CAS  Google Scholar 

  16. Zhang C L, Liu L, Zhang G W, et al. Determination of Neoproterozoic post-collisional granites in the north Qinling Mountains and its tectonic significance. Earth Sci Front (in Chinese with English abstract), 2004, 11(3): 33–42

    CAS  Google Scholar 

  17. Lu X X, Dong Y, Wei X D, et al. Geochronology of the Tuwushan A-type granite in East Qinling and its tectonic significance. Chin Sci Bull (in Chinese), 1999, 44: 975–978

    Google Scholar 

  18. Xiu X Y, Xia Z C, Xia L Y. Volcanic cycles of the Bikou Group and their tectonic implications. Geol Bull Chin (in Chinese with English abstract), 2002, 21: 478–485

    Google Scholar 

  19. Yan Q R, Hanson A D, Wang Z Q, et al. Neoproterozoic subduction and rifting on the northern margin of the Yangtze Plate, China: Implications for Rodinia reconstruction. Int Geol Rev, 2004, 46: 817–832

    Article  Google Scholar 

  20. Lu S N, Chen Z H, Li H K, et al. Two magmatic belts of the Neoproterozoic in the Qinling orogenic belt. Acta Geol Sin (in Chinese with English abstract), 2005, 79: 165–173

    CAS  Google Scholar 

  21. Qiu J X, et al. Alkaline Rocks in the Qin-Ba Area (in Chinese). Beijing: Geological Publishing House, 1993. 183

    Google Scholar 

  22. Jiang G Q, Zhou H R, Wang Z Q. Stratigraphic sequence, sedimentary environment and its tectono-paleogeographic significance of the Luanchuan Group, Luanchuan area, Henan Province. Geoscience (in Chinese with English abstract), 1994, 8: 430–440

    Google Scholar 

  23. Zhang Z W, Zhou L D, Zhu B Q, et al. The composition of primary minerals from alkali-rich intrusive rocks in the northern part of east Qinling, China. Acta Min Sin (in Chinese with English abstract), 2002, 22: 67–74

    CAS  Google Scholar 

  24. Li X H. Geochemistry of the Longsheng ophiolite from the southern margin of Yangtze Craton, SE China. Geochem J, 1997, 31: 323–337

    CAS  Google Scholar 

  25. Li X H, Li Z X, Zhou H, et al. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: implications for the initial rifting of Rodinia. Precambrian Res, 2002, 113: 135–154

    Article  CAS  Google Scholar 

  26. Whalen J B, Currie K L, Chappell B W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol, 1987, 95: 407–419

    Article  CAS  Google Scholar 

  27. Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. London: Geological Society of London, 1989. 313–345

    Google Scholar 

  28. Zhang Z W, Zhu B Q, Chang X Y. Nd, Sr, Pb isotopic geochemistry of the alkali-rich intrusive rocks in East Qinling, central China and its tectonic significance. Geochimica (in Chinese with English abstract), 2000, 29: 455–461

    CAS  Google Scholar 

  29. Zhang Z Q, Zhang G W, Liu D Y, et al. Isotopic Geochronology and Geochemistry of Ophiolites, Granites and Clastic Sedimentary Rocks in the Qinling Orogenic Belt (in Chinese). Beijing: Geological Publishing House, 2006. 348

    Google Scholar 

  30. Watson E B, Harrison T M. Zircon saturation revisited; temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett, 1983, 64: 295–304

    Article  CAS  Google Scholar 

  31. Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations by laser ablation-inductively coupled plasma-mass spectrometry. Geostand Geoanal Res, 2004, 28: 353–370

    Article  CAS  Google Scholar 

  32. Breeding C M, Ague J J, Grove M, et al. Isotopic and chemical alteration of zircon by metamorphic fluids: U-Pb age depth-profiling of zircon crystal from Barrow’s garnet zone, northwest Scotland. American Mineralogist, 2004, 89: 1067–1077

    CAS  Google Scholar 

  33. Ding S P, Pei X Z, Liu H B, et al. LA-ICP-M S zircon U-Pb dating of the Xinyang Neoproterozoic granitoids gneisses in the Tianshui area, western Qinling, and its geological significance. Geol Chin (in Chinese with English abstract), 2006, 33(6): 1217–1225

    CAS  Google Scholar 

  34. Wang T, Zhang Z Q, Wang X X, et al. Neoproterozoic collisional deformation in the core of the Qinling orogen and its age: Constrained by zircon SHRIMP dating of strongly deformed syn-collisional granites and weakly deformed granitic veins. Acta Geol Sin (in Chinese with English abstract), 2005, 79(20): 220–232

    CAS  Google Scholar 

  35. Lin H B, Pei X Z, Ding S P, et al. LA-ICP-MS zircon U-Pb dating of the Neoproterozoic granitic gneisses in the Yuanlong area, Tianshui City, West Qinling, China, and their geological significance. Geol Bull Chin (in Chinese with English abstract), 2006, 25(11): 1315–1320

    Google Scholar 

  36. Chen J L, Zhang Z W, Li H P, et al. Characteristics of metamorphic intrusion in Qinling complex. NW Geol (in Chinese with English abstract), 2004, 37(11): 34–39

    Google Scholar 

  37. Creaser R A, Price R C, Wormald R J. A-type granites revisited: Assessment of a residual-source model. Geology, 1991, 19: 163–166

    Article  Google Scholar 

  38. Barbarin, B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 1999, 46: 605–626

    Article  CAS  Google Scholar 

  39. Bonin B, Azzouni-Sekkal A, Bussy F, et al. Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: petrologic constraints and geodynamic settings. Lithos, 1998, 45: 45–70

    Article  CAS  Google Scholar 

  40. Martin R F. A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment. Lithos, 2006, 91(1–4): 125–136

    Article  CAS  Google Scholar 

  41. Goodge J W, Vervoort, J. D. Origin of Mesoproterozoic A-type granites in Laurentia: Hf isotope evidence. Earth Planet Sci Lett, 2006, 243: 711–731

    Article  CAS  Google Scholar 

  42. Bailey D K. Episodic alkaline activity across Africa: Implications for the causes of continental break-up. In: Storey B C, Alabaster T, Pankhurst, R. J, eds. Magmatism and the Causes of Continental Break-up. J Geol Soc (London), 1992, 68: 91–98

  43. Burke K, Ashwal L D, Webb S J. New way to map old sutures using deformed alkaline rocks and carbonatites. Geology, 2003, 31: 391–394

    Article  Google Scholar 

  44. Eby G N. Chemical subdivision of the A-type granitoids, petrogenetic and tectonic implications. Geology, 1992, 20: 641–644

    Article  CAS  Google Scholar 

  45. Li X H, Li Z X, Ge W, et al. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? Precambrian Res, 2003, 122: 45–83

    Article  CAS  Google Scholar 

  46. Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Res, 2003, 122: 85–109

    Article  CAS  Google Scholar 

  47. Li W X, Li X H, Li Z X. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrian Res, 2005, 136: 51–66

    Article  CAS  Google Scholar 

  48. Li X H, Li Z X, Sinclair J A, et al. Revisiting the “Yanbian Terrane”: implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China. Precambrian Res, 2006, 151: 14–30

    Article  CAS  Google Scholar 

  49. Zhou M F, Yan D P, Kennedy A K, et al. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth Planet Sci Lett, 2002, 196: 51–67

    Article  CAS  Google Scholar 

  50. Zheng Y F, Zhang S B, Zhao Z F, et al. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: implications for growth and reworking of continental crust. Lithos, 2007, 96: 127–150

    Article  CAS  Google Scholar 

  51. Li Z X, Li X H, Kinny P D, et al. The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth Planet Sci Lett, 1999, 173: 171–181

    Article  CAS  Google Scholar 

  52. Li X H, Li Z X, Zhou H, et al. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: implications for the initial rifting of Rodinia. Precambrian Res, 2002, 113: 135–155

    Article  CAS  Google Scholar 

  53. Li X H, Li Z X, Zhou H W, et al. SHRIMP U-Pb zircon age, geochemistry and Nd isotope of the Guandaoshan pluton in SW Sichuan: Petrogenesis and tectonic significance. Sci China Ser D-Earth Sci, 2003, 33(S1): 73–83

    Google Scholar 

  54. Li X H, Li Z X, Zhou H W, et al. U-Pb zircon geochronological, geochemical and Nd isotopical study of Neoproterozoic basaltic magmatism in western Sichuan: petrogenesis and geochemical implications. Earth Sci Front (in Chinese with English abstract), 2002, 9: 329–338

    CAS  Google Scholar 

  55. Li X H, Qi C S, Liu Y, et al. Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block: new constraints from Hf isotopes and Fe/Mn ratios. Chin Sci Bull, 2005, 50: 2481–2486

    Article  CAS  Google Scholar 

  56. Zhou M F, Kennedy A K, Sun M, et al. Neo-proterozoic arc-related mafic Intrusions in the northern margin of South China: implications for accretion of Rodinia. J Geol, 2002, 110: 611–618

    Article  Google Scholar 

  57. Zhou M F, Ma Y, Yan D P, et al. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block. Precambrian Res, 2006, 144: 19–38

    Article  CAS  Google Scholar 

  58. Druschke P, Handson A D, Yan Q, et al. Stratigraphic and U-Pb SHRIMP detrital zircon evidence for a Neoproterozoic continental Arc, Central China: Rodinia implications. J Geol, 2006, 114: 627–636

    Article  Google Scholar 

  59. Zhou J C, Wang X L, Qiu J S, et al. Geochemistry of Meso-and Neoproterozoic mafic-ultramafic rocks from northern Guangxi, China: arc or plume magmatism? Geochem J, 2004, 38: 139–152

    CAS  Google Scholar 

  60. Zhou J C, Wang X L, Qiu J S, et al. Lithogeochemistry of Meso-and Neoproterozoic mafic-ultramaflc rocks from northern Guangxi. Acta Petrol Sin (in Chinese with English abstract), 2003, 19: 9–18

    CAS  Google Scholar 

  61. Zheng Y F, Zhang S B. Formation and evolution of Precambrian continental crust in South China. Chin Sci Bull, 2007, 52: 1–12

    Article  CAS  Google Scholar 

  62. Frost B R, Barnes C, Collins W J, et al. A geochemical classification for granitic rocks. J Petrol, 2001, 42: 2033–2048

    Article  CAS  Google Scholar 

  63. Anthony E Y. Source regions of granites and their links to tectonic environment: examples from the western United States. Lithos, 2005, 80: 61–74

    Article  CAS  Google Scholar 

  64. Chen D L, Liu L, Zhou D W et al. 2002. Genesis and 40Ar-39Ar dating of clinopyroxene megacrysts in ultramafic terrain from Song-shugou, east Qinling Mountain and its geological implication. Acta Petrol Sin (in Chinese with English abstract), 2002, 18(3): 355–362

    Google Scholar 

  65. Wu R X, Zheng Y F, Wu Y B, et al. Reworking of juvenile crust: element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Res, 2006, 146: 179–212

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiWei Bao.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 40472032, 40721063 and 40672070), the National Basic Research Program of China (Grant No. 2006CB403504) and the Innovative Project of Chinese Academy of Sciences (Grant No. KZCX2-YW-128)

About this article

Cite this article

Bao, Z., Wang, Q., Bai, G. et al. Geochronology and geochemistry of the Fangcheng Neoproterozoic alkali-syenites in East Qinling orogen and its geodynamic implications. Chin. Sci. Bull. 53, 2050–2061 (2008). https://doi.org/10.1007/s11434-008-0113-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0113-z

Keywords

Navigation